Citation:
Hai-Xia Pang, Yong-Hai Hui, Kui Fan, Xue-Jian Xing, Yang Wua, Jing-Hui Yang, Wei Shi, Zheng-Feng Xie. A catalysis study of mesoporous MCM-41 supported Schiff base and CuSO4·5H2O in a highly regioselective synthesis of 4-thiazolidinone derivatives from cyclocondensation of mercaptoacetic acid[J]. Chinese Chemical Letters,
;2016, 27(03): 335-339.
doi:
10.1016/j.cclet.2015.10.029
-
Mesoporous MCM-41 supported Schiff base and CuSO4·5H2O shows high catalytic activity in the cyclocondensation of mercaptoacetic acid with imines (or aldehydes and amines) to afford pharmaceutically important thiazolidinone derivatives. The catalytic reactions involving twocomponents or three-components afforded the desired product in high yields (up to 98% and 99%). Moreover, the catalyst works well with respect to recyclability, giving the product in 85% and 83% yields after recycling six times.
-
Keywords:
- MCM-41,
- Schiff base,
- Cyclocondensation,
- Mercaptoacetic acid,
- Catalysis
-
-
-
[1]
[1] (a) M.G. Vigorita, R. Ottana, F. Monforte, et al., Synthesis and antiinflammatory, analgesic activity of 3,3'-(1,2-ethanediyl)-bis[2-aryl-4-thiazolidinone] chiral compounds, Bioorg. Med. Chem. Lett. 11(2001) 2791-2794;
-
[2]
(b) C. Perez, J.P. Monserrat, Y. Chen, et al., Exploring hydrogen peroxide responsive thiazolidinone-based prodrugs, Chem. Commun. 51(2015) 7116-7119.
-
[3]
[2] (a) V.S. Palekar, A.J. Damle, S.R. Shukla, Synthesis and antibacterial activity of some novel bis-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and bis-4-thiazolidinone derivatives from terephthalic dihydrazide, Eur. J. Med. Chem. 44(2009) 5112-5116;
-
[4]
(b) E. Pitta, E. Tsolaki, A. Geronikaki, et al., 4-Thiazolidinone derivatives as potent antimicrobial agents:microwave-assisted synthesis, biological evaluation and docking studies, Med. Chem. Commun. 6(2015) 319-326;
-
[5]
(c) R.V. Patel, S.W. Park, Discovery of the highly potent fluoroquinolone-based benzothiazolyl-4-thiazolidinone hybrids as antibacterials, Chem. Biol. Drug Des. 84(2014) 123-129.
-
[6]
[3] (a) J.L. Romine, D.R. St. Laurent, J.E. Leet, et al., (Ⅰ)nhibitors of HCV NS5A:from iminothiazolidinones to symmetrical stilbenes, ACS Med. Chem. Lett. 2(2011) 224-229;
-
[7]
(b) K.M. Hosamani, R.V. Shingalapur, Synthesis of 2-mercaptobenzimidazole derivatives as potential anti-microbial and cytotoxic agents, Arch. Pharm. 344(2011) 311-319.
-
[8]
[4] (a) D. Havrylyuk, B. Zimenkovsky, O. Vasylenko, et al., Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity, Eur. J. Med. Chem. 44(2009) 1396-1404;
-
[9]
(b) S. Wang, Y. Zhao, G. Zhang, et al., Design, synthesis and biological evaluation of novel 4-thiazolidinones containing indolin-2-one moiety as potential antitumor agent, Eur. J. Med. Chem. 46(2011) 3509-3518.
-
[10]
[5] V.R. Solomon, W. Haq, K. Srivastava, et al., Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives, J. Med. Chem. 50(2007) 394-398.
-
[11]
[6] R.K. Rawal, R. Tripathi, S.B. Katti, et al., Design, synthesis and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-H(Ⅰ)V agents, Bioorg. Med. Chem. 15(2007) 1725-1731.
-
[12]
[7] T. Shrivastava, A.K. Gaikwad, W. Haq, et al., Synthesis and biological evaluation of 4-thiazolidinone derivatives as potential antimicrobacterial agents, Arkivoc 2(2005) 120-130.
-
[13]
[8] M.V. Diurno, O. Mazzoni, P.E. Calignano, et al., Synthesis and antihistaminic activity of some thiazolidin-4-ones, J. Med. Chem. 35(1992) 2910-2912.
-
[14]
[9] N. Siddiqui, M.F. Arshad, S.A. Khan, et al., Sulfonamide derivatives of thiazolidin-4-ones with anticonvulsant activity against two seizure models:synthesis and pharmacological evaluation, J. Enzyme (Ⅰ)nhib. Med. Chem. 25(2010) 485-491.
-
[15]
[10] C.M. Jackson, B. Blass, K. Coburn, et al., Evolution of thiazolidine-based blockers of human Kv1.5 for the treatment of atrial arrhythmias, Bioorg. Med. Chem. Lett. 17(2007) 282-284.
-
[16]
[11] (a) T. Srivastava, W. Haq, S.B. Katti, Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot three-component condensation, Tetrahedron 58(2002) 7619-7624;
-
[17]
(b) A.C. Tripathi, S.J. Gupta, G.N. Fatima, et al., 4-Thiazolidinones:the advances continue, Eur. J. Med. Chem. 72(2014) 52-77.
-
[18]
[12] R.C. Sharma, D. Kumar, Synthesis of some new thiazolidin-4-ones as possible antimicrobial agents, J. (Ⅰ)ndian Chem. Soc. 77(2000) 492-493.
-
[19]
[13] T. Srivastava, W. Haq, S.B. Katti, Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot three-component condensation, Tetrahedron 58(2002) 7619-7624.
-
[20]
[14] R.K. Rawal, T. Srivastava, W. Haq, et al., An expeditious synthesis of thiazolidinones and tetathiazanones, J. Chem. Res. 5(2004) 368-369.
-
[21]
[15] (a) C.P. Homes, J.P. Chinn, C.G. Look, et al., Strategies for combinatorial organic synthesis:solution and polymer-supported synthesis of 4-thiazolidinones and 4-metathiazanones derived from amino acids, J. Org. Chem. 60(1995) 7328-7333;
-
[22]
(b) M.P. Thakare, P. Kumar, N. Kumar, et al., Silica gel promoted environmentfriendly synthesis of 2,3-disubstituted 4-thiazolidinones, Tetrahedron Lett. 55(2014) 2463-2466.
-
[23]
[16] (a) A. Bolognese, G. Correale, M. Manfra, et al., Thiazolidin-4-one formation. Mechanistic and synthetic aspects of the reaction of imines and mercaptoacetic acid under microwave and conventional heating, Org. Biomol. Chem. 2(2004) 2809-2813;
-
[24]
(b) A. Dandia, R. Singh, S. Bhaskaran, et al., Versatile three component procedure for combinatorial synthesis of biologically relevant scaffold spiro[indole-thiazolidinones] under aqueous conditions, Green Chem. 13(2011) 1852-1859;
-
[25]
(c) D. Prasad, A. Pmreetam, M. Nath, DBSA catalyzed, one-pot three-component "on water" green protocol for the synthesis of 2,3-disubstituted 4-thiazolidinones, RSC Adv. 2(2012) 3133-3140;
-
[26]
(d) D. Prasad, M. Nath, Three-component domino reaction in PPG:an easy access to 4-thiazolidinone derivatives, J. Heterocycl. Chem. 49(2012) 628-633.
-
[27]
[17] (a) S.L. Xie, Y.H. Hui, X.J. Long, et al., Aza-Michael addition reactions between nitroolefins and benzotriazole catalyzedby MCM-41 immobilized heteropoly acids in water, Chin. Chem. Lett. 24(2013) 28-30;
-
[28]
(b) F. Havasi, A. Ghorbani-Choqhamarani, F. Nikpour, Pd-grafted functionalized mesoporous MCM-41:a novel, green and heterogeneous nanocatalyst for the selective synthesis of phenols and anilines from aryl halides in water, New J. Chem. 39(2015) 6504-6512;
-
[29]
(c) M. Nikoorazm, A. Ghorbani-Choqhamarani, H. Mahdavi, et al., Efficient oxidative coupling of thiols and oxidation of sulfides using UHP in the presence of Ni or Cd salen complexes immobilized on MCM-41 mesoporous as novel and recoverable nanocatalysts, Microporous Mesoporous Mater. 211(2015) 174-181;
-
[30]
(d) A. Ghorbani-Choqhamarani, F. Nikpour, F. Ghorbani, et al., Anchoring of Pd(Ⅱ) complex in functionalized MCM-41 as an efficient and recoverable novel nano catalyst in C-C, C-O and C-N coupling reactions using Ph3SnCl, RSC Adv. 5(2015) 33212-33220.
-
[31]
[18] X.Z. Dong, Y.H. Hui, S.L. Xie, et al., Schiff base supported MCM-41 catalyzed the Knoevenagel condensation in water, RSC Adv. 3(2013) 3222-3226.
-
[32]
[19] (a) G.P. Zhou, L. Yu, Y.H. Hui, et al., Study on the epoxidation of α,β-unsaturated ketones catalyzed by MCM-41 supported Schiff base, Acta Chim. Sinica 70(2012) 1289-1294;
-
[33]
(b) C.C. Wang, S.L. Xie, Z.F. Xie, et al., Michael addition reaction of malononitrile and α,β-unsaturated ketones catalyzed by amine functuonalized MCM-41, Chin. J. Org. Chem. 33(2013) 2391-2395;
-
[34]
(c) K. Fan, Y.H. Hui, X.M. Hu, et al., PMoA/MCM-41 catalyzed aza-Michael reaction:special effects of mesoporous nanoreactor on chemical equilibrium and reaction rate through surface energy transformation, New J. Chem. 39(2015) 5916-5919.
-
[35]
[20] D. Kumar, M. Sonawane, B. Pujala, et al., Supported protic acid-catalyzed synthesis of 2,3-disubstituted thiazolidin-4-ones:enhancement of the catalytic potential of protic acid by adsorption on solid supports, Green Chem. 15(2013) 2872-2884.
-
[1]
-
-
-
[1]
Fozia Nazir , Syeda Sundas Musawar , Ashfaq Ahmad Khan , Bilal Akram , Farid Ahmed . Chromogenic and fluorogenic Schiff base sensors. Chinese Journal of Structural Chemistry, 2025, 44(12): 100751-100751. doi: 10.1016/j.cjsc.2025.100751
-
[2]
Yuanyu YANG , Jianhua XUE , Yujia BAI , Lulu CUI , Dongdong YANG , Qi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005
-
[3]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[4]
Ke Wu , Xiuqin Ruan , Shuolei Jia , Enyuan Wang , Qingfa Zhou . DABCO-catalyzed [3+4] annulations of Schiff bases with α-substituted allenes: Construction of functionalized benzazepine derivatives. Chinese Chemical Letters, 2025, 36(7): 110646-. doi: 10.1016/j.cclet.2024.110646
-
[5]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[6]
Manqi Zhao , Heting Hou , Dehua He , Huimin Liu , Shaoyuan Sun , Dezheng Li , Chao Wang , Yiming Lei . Vanadium-based catalysts for propane direct dehydrogenation to propylene: Modification strategies and research direction. Chinese Journal of Structural Chemistry, 2025, 44(11): 100709-100709. doi: 10.1016/j.cjsc.2025.100709
-
[7]
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
-
[8]
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
-
[9]
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
-
[10]
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
-
[11]
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
-
[12]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[13]
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
-
[14]
Haijiang Gong , Qingtan Zeng , Shili Gai , Yaqian Du , Jing Zhang , Qingyu Wang , He Ding , Lichun Wu , Anees Ahmad Ansari , Piaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059
-
[15]
Li-Min Cui , Wei-Hui Fang , Jian Zhang . Polyoxometalates containing aluminum atoms. Chinese Chemical Letters, 2025, 36(10): 110386-. doi: 10.1016/j.cclet.2024.110386
-
[16]
Giulia Brufani , Edoardo Bazzica , Yanlong Gu , Francesco Mauriello , Luigi Vaccaro . Csp2–H functionalization as an efficient catalytic route to carbazoles. Chinese Chemical Letters, 2026, 37(1): 111545-. doi: 10.1016/j.cclet.2025.111545
-
[17]
Jingying Wang , Jianhui Zhao , Shaopo Wang , Jingjie Yu , Ning Li . Single-atom catalysts for CO2-to-methanol conversion: A critical review. Chinese Chemical Letters, 2026, 37(2): 111859-. doi: 10.1016/j.cclet.2025.111859
-
[18]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[19]
Xiaotong LU , Pan ZHANG , Zijie ZHAO , Lei HUANG , Hongwei ZUO , Lili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073
-
[20]
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1408)
- HTML views(83)
Login In
DownLoad: