Citation: Hai-Xia Pang, Yong-Hai Hui, Kui Fan, Xue-Jian Xing, Yang Wua, Jing-Hui Yang, Wei Shi, Zheng-Feng Xie. A catalysis study of mesoporous MCM-41 supported Schiff base and CuSO4·5H2O in a highly regioselective synthesis of 4-thiazolidinone derivatives from cyclocondensation of mercaptoacetic acid[J]. Chinese Chemical Letters, ;2016, 27(03): 335-339. doi: 10.1016/j.cclet.2015.10.029 shu

A catalysis study of mesoporous MCM-41 supported Schiff base and CuSO4·5H2O in a highly regioselective synthesis of 4-thiazolidinone derivatives from cyclocondensation of mercaptoacetic acid

  • Corresponding author: Yong-Hai Hui,  Zheng-Feng Xie, 
  • Received Date: 6 September 2015
    Available Online: 19 October 2015

    Fund Project:

  • Mesoporous MCM-41 supported Schiff base and CuSO4·5H2O shows high catalytic activity in the cyclocondensation of mercaptoacetic acid with imines (or aldehydes and amines) to afford pharmaceutically important thiazolidinone derivatives. The catalytic reactions involving twocomponents or three-components afforded the desired product in high yields (up to 98% and 99%). Moreover, the catalyst works well with respect to recyclability, giving the product in 85% and 83% yields after recycling six times.
  • 加载中
    1. [1]

      [1] (a) M.G. Vigorita, R. Ottana, F. Monforte, et al., Synthesis and antiinflammatory, analgesic activity of 3,3'-(1,2-ethanediyl)-bis[2-aryl-4-thiazolidinone] chiral compounds, Bioorg. Med. Chem. Lett. 11(2001) 2791-2794;

    2. [2]

      (b) C. Perez, J.P. Monserrat, Y. Chen, et al., Exploring hydrogen peroxide responsive thiazolidinone-based prodrugs, Chem. Commun. 51(2015) 7116-7119.

    3. [3]

      [2] (a) V.S. Palekar, A.J. Damle, S.R. Shukla, Synthesis and antibacterial activity of some novel bis-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and bis-4-thiazolidinone derivatives from terephthalic dihydrazide, Eur. J. Med. Chem. 44(2009) 5112-5116;

    4. [4]

      (b) E. Pitta, E. Tsolaki, A. Geronikaki, et al., 4-Thiazolidinone derivatives as potent antimicrobial agents:microwave-assisted synthesis, biological evaluation and docking studies, Med. Chem. Commun. 6(2015) 319-326;

    5. [5]

      (c) R.V. Patel, S.W. Park, Discovery of the highly potent fluoroquinolone-based benzothiazolyl-4-thiazolidinone hybrids as antibacterials, Chem. Biol. Drug Des. 84(2014) 123-129.

    6. [6]

      [3] (a) J.L. Romine, D.R. St. Laurent, J.E. Leet, et al., (Ⅰ)nhibitors of HCV NS5A:from iminothiazolidinones to symmetrical stilbenes, ACS Med. Chem. Lett. 2(2011) 224-229;

    7. [7]

      (b) K.M. Hosamani, R.V. Shingalapur, Synthesis of 2-mercaptobenzimidazole derivatives as potential anti-microbial and cytotoxic agents, Arch. Pharm. 344(2011) 311-319.

    8. [8]

      [4] (a) D. Havrylyuk, B. Zimenkovsky, O. Vasylenko, et al., Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity, Eur. J. Med. Chem. 44(2009) 1396-1404;

    9. [9]

      (b) S. Wang, Y. Zhao, G. Zhang, et al., Design, synthesis and biological evaluation of novel 4-thiazolidinones containing indolin-2-one moiety as potential antitumor agent, Eur. J. Med. Chem. 46(2011) 3509-3518.

    10. [10]

      [5] V.R. Solomon, W. Haq, K. Srivastava, et al., Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives, J. Med. Chem. 50(2007) 394-398.

    11. [11]

      [6] R.K. Rawal, R. Tripathi, S.B. Katti, et al., Design, synthesis and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-H(Ⅰ)V agents, Bioorg. Med. Chem. 15(2007) 1725-1731.

    12. [12]

      [7] T. Shrivastava, A.K. Gaikwad, W. Haq, et al., Synthesis and biological evaluation of 4-thiazolidinone derivatives as potential antimicrobacterial agents, Arkivoc 2(2005) 120-130.

    13. [13]

      [8] M.V. Diurno, O. Mazzoni, P.E. Calignano, et al., Synthesis and antihistaminic activity of some thiazolidin-4-ones, J. Med. Chem. 35(1992) 2910-2912.

    14. [14]

      [9] N. Siddiqui, M.F. Arshad, S.A. Khan, et al., Sulfonamide derivatives of thiazolidin-4-ones with anticonvulsant activity against two seizure models:synthesis and pharmacological evaluation, J. Enzyme (Ⅰ)nhib. Med. Chem. 25(2010) 485-491.

    15. [15]

      [10] C.M. Jackson, B. Blass, K. Coburn, et al., Evolution of thiazolidine-based blockers of human Kv1.5 for the treatment of atrial arrhythmias, Bioorg. Med. Chem. Lett. 17(2007) 282-284.

    16. [16]

      [11] (a) T. Srivastava, W. Haq, S.B. Katti, Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot three-component condensation, Tetrahedron 58(2002) 7619-7624;

    17. [17]

      (b) A.C. Tripathi, S.J. Gupta, G.N. Fatima, et al., 4-Thiazolidinones:the advances continue, Eur. J. Med. Chem. 72(2014) 52-77.

    18. [18]

      [12] R.C. Sharma, D. Kumar, Synthesis of some new thiazolidin-4-ones as possible antimicrobial agents, J. (Ⅰ)ndian Chem. Soc. 77(2000) 492-493.

    19. [19]

      [13] T. Srivastava, W. Haq, S.B. Katti, Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot three-component condensation, Tetrahedron 58(2002) 7619-7624.

    20. [20]

      [14] R.K. Rawal, T. Srivastava, W. Haq, et al., An expeditious synthesis of thiazolidinones and tetathiazanones, J. Chem. Res. 5(2004) 368-369.

    21. [21]

      [15] (a) C.P. Homes, J.P. Chinn, C.G. Look, et al., Strategies for combinatorial organic synthesis:solution and polymer-supported synthesis of 4-thiazolidinones and 4-metathiazanones derived from amino acids, J. Org. Chem. 60(1995) 7328-7333;

    22. [22]

      (b) M.P. Thakare, P. Kumar, N. Kumar, et al., Silica gel promoted environmentfriendly synthesis of 2,3-disubstituted 4-thiazolidinones, Tetrahedron Lett. 55(2014) 2463-2466.

    23. [23]

      [16] (a) A. Bolognese, G. Correale, M. Manfra, et al., Thiazolidin-4-one formation. Mechanistic and synthetic aspects of the reaction of imines and mercaptoacetic acid under microwave and conventional heating, Org. Biomol. Chem. 2(2004) 2809-2813;

    24. [24]

      (b) A. Dandia, R. Singh, S. Bhaskaran, et al., Versatile three component procedure for combinatorial synthesis of biologically relevant scaffold spiro[indole-thiazolidinones] under aqueous conditions, Green Chem. 13(2011) 1852-1859;

    25. [25]

      (c) D. Prasad, A. Pmreetam, M. Nath, DBSA catalyzed, one-pot three-component "on water" green protocol for the synthesis of 2,3-disubstituted 4-thiazolidinones, RSC Adv. 2(2012) 3133-3140;

    26. [26]

      (d) D. Prasad, M. Nath, Three-component domino reaction in PPG:an easy access to 4-thiazolidinone derivatives, J. Heterocycl. Chem. 49(2012) 628-633.

    27. [27]

      [17] (a) S.L. Xie, Y.H. Hui, X.J. Long, et al., Aza-Michael addition reactions between nitroolefins and benzotriazole catalyzedby MCM-41 immobilized heteropoly acids in water, Chin. Chem. Lett. 24(2013) 28-30;

    28. [28]

      (b) F. Havasi, A. Ghorbani-Choqhamarani, F. Nikpour, Pd-grafted functionalized mesoporous MCM-41:a novel, green and heterogeneous nanocatalyst for the selective synthesis of phenols and anilines from aryl halides in water, New J. Chem. 39(2015) 6504-6512;

    29. [29]

      (c) M. Nikoorazm, A. Ghorbani-Choqhamarani, H. Mahdavi, et al., Efficient oxidative coupling of thiols and oxidation of sulfides using UHP in the presence of Ni or Cd salen complexes immobilized on MCM-41 mesoporous as novel and recoverable nanocatalysts, Microporous Mesoporous Mater. 211(2015) 174-181;

    30. [30]

      (d) A. Ghorbani-Choqhamarani, F. Nikpour, F. Ghorbani, et al., Anchoring of Pd(Ⅱ) complex in functionalized MCM-41 as an efficient and recoverable novel nano catalyst in C-C, C-O and C-N coupling reactions using Ph3SnCl, RSC Adv. 5(2015) 33212-33220.

    31. [31]

      [18] X.Z. Dong, Y.H. Hui, S.L. Xie, et al., Schiff base supported MCM-41 catalyzed the Knoevenagel condensation in water, RSC Adv. 3(2013) 3222-3226.

    32. [32]

      [19] (a) G.P. Zhou, L. Yu, Y.H. Hui, et al., Study on the epoxidation of α,β-unsaturated ketones catalyzed by MCM-41 supported Schiff base, Acta Chim. Sinica 70(2012) 1289-1294;

    33. [33]

      (b) C.C. Wang, S.L. Xie, Z.F. Xie, et al., Michael addition reaction of malononitrile and α,β-unsaturated ketones catalyzed by amine functuonalized MCM-41, Chin. J. Org. Chem. 33(2013) 2391-2395;

    34. [34]

      (c) K. Fan, Y.H. Hui, X.M. Hu, et al., PMoA/MCM-41 catalyzed aza-Michael reaction:special effects of mesoporous nanoreactor on chemical equilibrium and reaction rate through surface energy transformation, New J. Chem. 39(2015) 5916-5919.

    35. [35]

      [20] D. Kumar, M. Sonawane, B. Pujala, et al., Supported protic acid-catalyzed synthesis of 2,3-disubstituted thiazolidin-4-ones:enhancement of the catalytic potential of protic acid by adsorption on solid supports, Green Chem. 15(2013) 2872-2884.

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    3. [3]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    4. [4]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    5. [5]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    8. [8]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    9. [9]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    10. [10]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    11. [11]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    12. [12]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    13. [13]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    14. [14]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    15. [15]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    16. [16]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    17. [17]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    18. [18]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

Metrics
  • PDF Downloads(0)
  • Abstract views(620)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return