Citation: Hai-Xia Pang, Yong-Hai Hui, Kui Fan, Xue-Jian Xing, Yang Wua, Jing-Hui Yang, Wei Shi, Zheng-Feng Xie. A catalysis study of mesoporous MCM-41 supported Schiff base and CuSO4·5H2O in a highly regioselective synthesis of 4-thiazolidinone derivatives from cyclocondensation of mercaptoacetic acid[J]. Chinese Chemical Letters, ;2016, 27(03): 335-339. doi: 10.1016/j.cclet.2015.10.029 shu

A catalysis study of mesoporous MCM-41 supported Schiff base and CuSO4·5H2O in a highly regioselective synthesis of 4-thiazolidinone derivatives from cyclocondensation of mercaptoacetic acid

  • Corresponding author: Yong-Hai Hui,  Zheng-Feng Xie, 
  • Received Date: 6 September 2015
    Available Online: 19 October 2015

    Fund Project:

  • Mesoporous MCM-41 supported Schiff base and CuSO4·5H2O shows high catalytic activity in the cyclocondensation of mercaptoacetic acid with imines (or aldehydes and amines) to afford pharmaceutically important thiazolidinone derivatives. The catalytic reactions involving twocomponents or three-components afforded the desired product in high yields (up to 98% and 99%). Moreover, the catalyst works well with respect to recyclability, giving the product in 85% and 83% yields after recycling six times.
  • 加载中
    1. [1]

      [1] (a) M.G. Vigorita, R. Ottana, F. Monforte, et al., Synthesis and antiinflammatory, analgesic activity of 3,3'-(1,2-ethanediyl)-bis[2-aryl-4-thiazolidinone] chiral compounds, Bioorg. Med. Chem. Lett. 11(2001) 2791-2794;

    2. [2]

      (b) C. Perez, J.P. Monserrat, Y. Chen, et al., Exploring hydrogen peroxide responsive thiazolidinone-based prodrugs, Chem. Commun. 51(2015) 7116-7119.

    3. [3]

      [2] (a) V.S. Palekar, A.J. Damle, S.R. Shukla, Synthesis and antibacterial activity of some novel bis-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and bis-4-thiazolidinone derivatives from terephthalic dihydrazide, Eur. J. Med. Chem. 44(2009) 5112-5116;

    4. [4]

      (b) E. Pitta, E. Tsolaki, A. Geronikaki, et al., 4-Thiazolidinone derivatives as potent antimicrobial agents:microwave-assisted synthesis, biological evaluation and docking studies, Med. Chem. Commun. 6(2015) 319-326;

    5. [5]

      (c) R.V. Patel, S.W. Park, Discovery of the highly potent fluoroquinolone-based benzothiazolyl-4-thiazolidinone hybrids as antibacterials, Chem. Biol. Drug Des. 84(2014) 123-129.

    6. [6]

      [3] (a) J.L. Romine, D.R. St. Laurent, J.E. Leet, et al., (Ⅰ)nhibitors of HCV NS5A:from iminothiazolidinones to symmetrical stilbenes, ACS Med. Chem. Lett. 2(2011) 224-229;

    7. [7]

      (b) K.M. Hosamani, R.V. Shingalapur, Synthesis of 2-mercaptobenzimidazole derivatives as potential anti-microbial and cytotoxic agents, Arch. Pharm. 344(2011) 311-319.

    8. [8]

      [4] (a) D. Havrylyuk, B. Zimenkovsky, O. Vasylenko, et al., Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity, Eur. J. Med. Chem. 44(2009) 1396-1404;

    9. [9]

      (b) S. Wang, Y. Zhao, G. Zhang, et al., Design, synthesis and biological evaluation of novel 4-thiazolidinones containing indolin-2-one moiety as potential antitumor agent, Eur. J. Med. Chem. 46(2011) 3509-3518.

    10. [10]

      [5] V.R. Solomon, W. Haq, K. Srivastava, et al., Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives, J. Med. Chem. 50(2007) 394-398.

    11. [11]

      [6] R.K. Rawal, R. Tripathi, S.B. Katti, et al., Design, synthesis and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-H(Ⅰ)V agents, Bioorg. Med. Chem. 15(2007) 1725-1731.

    12. [12]

      [7] T. Shrivastava, A.K. Gaikwad, W. Haq, et al., Synthesis and biological evaluation of 4-thiazolidinone derivatives as potential antimicrobacterial agents, Arkivoc 2(2005) 120-130.

    13. [13]

      [8] M.V. Diurno, O. Mazzoni, P.E. Calignano, et al., Synthesis and antihistaminic activity of some thiazolidin-4-ones, J. Med. Chem. 35(1992) 2910-2912.

    14. [14]

      [9] N. Siddiqui, M.F. Arshad, S.A. Khan, et al., Sulfonamide derivatives of thiazolidin-4-ones with anticonvulsant activity against two seizure models:synthesis and pharmacological evaluation, J. Enzyme (Ⅰ)nhib. Med. Chem. 25(2010) 485-491.

    15. [15]

      [10] C.M. Jackson, B. Blass, K. Coburn, et al., Evolution of thiazolidine-based blockers of human Kv1.5 for the treatment of atrial arrhythmias, Bioorg. Med. Chem. Lett. 17(2007) 282-284.

    16. [16]

      [11] (a) T. Srivastava, W. Haq, S.B. Katti, Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot three-component condensation, Tetrahedron 58(2002) 7619-7624;

    17. [17]

      (b) A.C. Tripathi, S.J. Gupta, G.N. Fatima, et al., 4-Thiazolidinones:the advances continue, Eur. J. Med. Chem. 72(2014) 52-77.

    18. [18]

      [12] R.C. Sharma, D. Kumar, Synthesis of some new thiazolidin-4-ones as possible antimicrobial agents, J. (Ⅰ)ndian Chem. Soc. 77(2000) 492-493.

    19. [19]

      [13] T. Srivastava, W. Haq, S.B. Katti, Carbodiimide mediated synthesis of 4-thiazolidinones by one-pot three-component condensation, Tetrahedron 58(2002) 7619-7624.

    20. [20]

      [14] R.K. Rawal, T. Srivastava, W. Haq, et al., An expeditious synthesis of thiazolidinones and tetathiazanones, J. Chem. Res. 5(2004) 368-369.

    21. [21]

      [15] (a) C.P. Homes, J.P. Chinn, C.G. Look, et al., Strategies for combinatorial organic synthesis:solution and polymer-supported synthesis of 4-thiazolidinones and 4-metathiazanones derived from amino acids, J. Org. Chem. 60(1995) 7328-7333;

    22. [22]

      (b) M.P. Thakare, P. Kumar, N. Kumar, et al., Silica gel promoted environmentfriendly synthesis of 2,3-disubstituted 4-thiazolidinones, Tetrahedron Lett. 55(2014) 2463-2466.

    23. [23]

      [16] (a) A. Bolognese, G. Correale, M. Manfra, et al., Thiazolidin-4-one formation. Mechanistic and synthetic aspects of the reaction of imines and mercaptoacetic acid under microwave and conventional heating, Org. Biomol. Chem. 2(2004) 2809-2813;

    24. [24]

      (b) A. Dandia, R. Singh, S. Bhaskaran, et al., Versatile three component procedure for combinatorial synthesis of biologically relevant scaffold spiro[indole-thiazolidinones] under aqueous conditions, Green Chem. 13(2011) 1852-1859;

    25. [25]

      (c) D. Prasad, A. Pmreetam, M. Nath, DBSA catalyzed, one-pot three-component "on water" green protocol for the synthesis of 2,3-disubstituted 4-thiazolidinones, RSC Adv. 2(2012) 3133-3140;

    26. [26]

      (d) D. Prasad, M. Nath, Three-component domino reaction in PPG:an easy access to 4-thiazolidinone derivatives, J. Heterocycl. Chem. 49(2012) 628-633.

    27. [27]

      [17] (a) S.L. Xie, Y.H. Hui, X.J. Long, et al., Aza-Michael addition reactions between nitroolefins and benzotriazole catalyzedby MCM-41 immobilized heteropoly acids in water, Chin. Chem. Lett. 24(2013) 28-30;

    28. [28]

      (b) F. Havasi, A. Ghorbani-Choqhamarani, F. Nikpour, Pd-grafted functionalized mesoporous MCM-41:a novel, green and heterogeneous nanocatalyst for the selective synthesis of phenols and anilines from aryl halides in water, New J. Chem. 39(2015) 6504-6512;

    29. [29]

      (c) M. Nikoorazm, A. Ghorbani-Choqhamarani, H. Mahdavi, et al., Efficient oxidative coupling of thiols and oxidation of sulfides using UHP in the presence of Ni or Cd salen complexes immobilized on MCM-41 mesoporous as novel and recoverable nanocatalysts, Microporous Mesoporous Mater. 211(2015) 174-181;

    30. [30]

      (d) A. Ghorbani-Choqhamarani, F. Nikpour, F. Ghorbani, et al., Anchoring of Pd(Ⅱ) complex in functionalized MCM-41 as an efficient and recoverable novel nano catalyst in C-C, C-O and C-N coupling reactions using Ph3SnCl, RSC Adv. 5(2015) 33212-33220.

    31. [31]

      [18] X.Z. Dong, Y.H. Hui, S.L. Xie, et al., Schiff base supported MCM-41 catalyzed the Knoevenagel condensation in water, RSC Adv. 3(2013) 3222-3226.

    32. [32]

      [19] (a) G.P. Zhou, L. Yu, Y.H. Hui, et al., Study on the epoxidation of α,β-unsaturated ketones catalyzed by MCM-41 supported Schiff base, Acta Chim. Sinica 70(2012) 1289-1294;

    33. [33]

      (b) C.C. Wang, S.L. Xie, Z.F. Xie, et al., Michael addition reaction of malononitrile and α,β-unsaturated ketones catalyzed by amine functuonalized MCM-41, Chin. J. Org. Chem. 33(2013) 2391-2395;

    34. [34]

      (c) K. Fan, Y.H. Hui, X.M. Hu, et al., PMoA/MCM-41 catalyzed aza-Michael reaction:special effects of mesoporous nanoreactor on chemical equilibrium and reaction rate through surface energy transformation, New J. Chem. 39(2015) 5916-5919.

    35. [35]

      [20] D. Kumar, M. Sonawane, B. Pujala, et al., Supported protic acid-catalyzed synthesis of 2,3-disubstituted thiazolidin-4-ones:enhancement of the catalytic potential of protic acid by adsorption on solid supports, Green Chem. 15(2013) 2872-2884.

  • 加载中
    1. [1]

      Fozia Nazir Syeda Sundas Musawar Ashfaq Ahmad Khan Bilal Akram Farid Ahmed . Chromogenic and fluorogenic Schiff base sensors. Chinese Journal of Structural Chemistry, 2025, 44(12): 100751-100751. doi: 10.1016/j.cjsc.2025.100751

    2. [2]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Ke WuXiuqin RuanShuolei JiaEnyuan WangQingfa Zhou . DABCO-catalyzed [3+4] annulations of Schiff bases with α-substituted allenes: Construction of functionalized benzazepine derivatives. Chinese Chemical Letters, 2025, 36(7): 110646-. doi: 10.1016/j.cclet.2024.110646

    5. [5]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    6. [6]

      Manqi Zhao Heting Hou Dehua He Huimin Liu Shaoyuan Sun Dezheng Li Chao Wang Yiming Lei . Vanadium-based catalysts for propane direct dehydrogenation to propylene: Modification strategies and research direction. Chinese Journal of Structural Chemistry, 2025, 44(11): 100709-100709. doi: 10.1016/j.cjsc.2025.100709

    7. [7]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    8. [8]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    9. [9]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    10. [10]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    11. [11]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    12. [12]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    13. [13]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    14. [14]

      Haijiang GongQingtan ZengShili GaiYaqian DuJing ZhangQingyu WangHe DingLichun WuAnees Ahmad AnsariPiaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059

    15. [15]

      Li-Min CuiWei-Hui FangJian Zhang . Polyoxometalates containing aluminum atoms. Chinese Chemical Letters, 2025, 36(10): 110386-. doi: 10.1016/j.cclet.2024.110386

    16. [16]

      Giulia BrufaniEdoardo BazzicaYanlong GuFrancesco MaurielloLuigi Vaccaro . Csp2–H functionalization as an efficient catalytic route to carbazoles. Chinese Chemical Letters, 2026, 37(1): 111545-. doi: 10.1016/j.cclet.2025.111545

    17. [17]

      Jingying WangJianhui ZhaoShaopo WangJingjie YuNing Li . Single-atom catalysts for CO2-to-methanol conversion: A critical review. Chinese Chemical Letters, 2026, 37(2): 111859-. doi: 10.1016/j.cclet.2025.111859

    18. [18]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    19. [19]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    20. [20]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

Metrics
  • PDF Downloads(0)
  • Abstract views(1408)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return