Citation: Zahid Zaheer, Firoz A. Kalam Khan, Jaiprakash N. Sangshetti, Rajendra H. Patil. Expeditious synthesis, antileishmanial and antioxidant activities of novel 3-substituted-4-hydroxycoumarin derivatives[J]. Chinese Chemical Letters, ;2016, 27(02): 287-294. doi: 10.1016/j.cclet.2015.10.028
-
A series of novel 3-substituted-4-hydroxycoumarin derivatives 6(a-l) were synthesized in high yield using one-pot three component coupling reaction catalyzed by ceric ammonium nitrate. These compounds were evaluated for antileishmanial activity against Leishmania donovani promastigotes and antioxidant activity (DPPH-radical scavenging activity). Two compounds, 6h (IC50 = 9.90 µmol/L) and 6i (IC50 = 6.90 µmol/L) displayed potent antileishmanial activity when compared with standard antileishmanial agents pentamidine (IC50 = 16.15 µmol/L) and miltefosine (IC50 = 12.50 µmol/L). Three compounds, 6c (IC50 = 10.79 µmol/L), 6h (IC50 = 10.60 µmol/L), and 6i (IC50 = 10.73 µmol/L) showed significant antioxidant activity favorably with the antioxidant standards butylated hydroxy toluene (IC50 = 16.47 µmol/L) and ascorbic acid (IC50 = 12.69 µmol/L). A molecular docking study of compounds 6(a-l) suggested a possible mode of binding with the Adenine phosphoribosyltransferase enzyme of L. donovani. ADME properties were predicted in silico and support the potential of 6(a-l) to show favorable drug-like properties.
-
-
[1]
[1] (a) J.D. Berman, Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years, Clin. Infect Dis. 24 (1997) 684-703;
-
[2]
(b) M. Khaw, C.B. Panosian, Human antiprotozoal therapy: past, present, and future, Clin. Microbiol. Rev. 8 (1995) 427-439.
-
[3]
[2] R. Reithinger, J.C. Dujardin, H. Louzir, et al., Cutaneous leishmaniasis, Lancet Infect. Dis. 7 (2007) 581-596.
-
[4]
[3] World Health Organization (WHO), Tropical Disease Research Progress, World Health Organization (WHO), 2001.
-
[5]
[4] R.W. Ashford, P. Desjeux, P. DeRaadt, Estimation of population at risk of infection and number of cases of leishmaniasis, Parasitol. Today 8 (1992) 104-105.
-
[6]
[5] (a) H.W. Murray, Treatment of visceral leishmaniasis in 2004, Am. J. Trop. Med. Hyg. 71 (2004) 787-794;
-
[7]
(b) S.L. Croft, Recent developments in the chemotherapy of leishmaniasis, Trends Pharmacol. Sci. 9 (1988) 376-381;
-
[8]
(c) J.D. Berman, Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy, and future strategies, Rev. Infect Dis. 10 (1988) 560-586.
-
[9]
[6] K.F. Gey, The antioxidant hypothesis of cardiovascular disease: epidemiology and mechanisms, Biochem. Soc. Trans. 18 (1990) 1041-1045.
-
[10]
[7] (a) M.A. Smith, G. Perry, P.L. Richey, et al., Oxidative damage in Alzheimer's, Nature 382 (1996) 120-121;
-
[11]
(b) M.N. Diaz, B. Frei, J.A. Vita, J.F. Keaney, Antioxidants and atherosclerotic heart disease, N. Engl. J. Med. 337 (1997) 408-416.
-
[12]
[8] R.M. Wilson, S.J. Danishefsky, Small molecule natural products in the discovery of therapeutic agents: the synthesis connection, J. Org. Chem. 71 (2006) 8329-8351.
-
[13]
[9] M.J. Chan-Bacab, L.M. Peña-Rodríguez, Plant natural products with leishmanicidal activity, Nat. Prod. Rep. 18 (2001) 674-688.
-
[14]
[10] (a) I. Kostova, S. Bhatia, P. Grigorov, et al., Coumarins as antioxidants, Curr. Med. Chem. 18 (2011) 3929-3951;
-
[15]
(b) I. Kostova, Synthetic and natural coumarins as antioxidants, Mini Rev. Med. Chem. 6 (2006) 365-374.
-
[16]
[11] (a) L. Gupta, A. Talwar, Nishi, et al., Synthesis of marine alkaloid: 8,9-dihydrocoscinamide B and its analogues as novel class of antileishmanial agents, Bioorg. Med. Chem. Lett. 17 (2007) 4075-4079;
-
[17]
(b) S.S. Chauhan, L. Gupta, M. Mittal, et al., Synthesis and biological evaluation of indolyl glyoxylamides as a new class of antileishmanial agents, Bioorg. Med. Chem. Lett. 20 (2010) 6191-6194.
-
[18]
[12] (a) N.P. Sahu, C. Pal, N.B. Mandal, et al., Synthesis of a novel quinoline derivative, 2-(2-methylquinolin-4-ylamino)-N-phenylacetamide—a potential antileishmanial agent, Bioorg. Med. Chem. 10 (2002) 1687-1693;
-
[19]
(b) Z. Dardari, M. Lemrani, A. Bahloul, et al., Antileishmanial activity of a new 8-hydroxyquinoline derivative designed 7-[5'-(3'-phenylisoxazolino)methyl]-8-hydroxyquinoline: preliminary study, Farmaco 59 (2004) 195-199.
-
[20]
[13] (a) A. Tahghighi, S. Emami, S. Razmi, et al., New 5-(nitroheteroaryl)-1,3, 4-thiadiazols containing acyclic amines at C-2: synthesis and SAR study for their antileishmanial activity, J. Enzyme Inhib. Med. Chem. 28 (2013) 843-852;
-
[21]
(b) C.S. Reid, A.F. Farahat, X.H. Zhu, et al., Antileishmanial bis-arylimidamides: DB766 analogs modified in the linker region and bis-arylimidamide structure-activity relationships, Bioorg. Med. Chem. Lett. 22 (2012) 6806-6810.
-
[22]
[14] V. Muñoz, C. Morretti, M. Sauvain, et al., Isolation of bis-indole alkaloids with antileishmanial and antibacterial activities from Perschiera van heurkii (syn. Tabernaemontana van heurkii), Planta Med. 60 (1994) 455-459.
-
[23]
[15] (a) A.G. Tempone, A.C.M.P. da Silva, C.A. Brandt, et al., Synthesis and antileishmanial activities of novel 3-substituted quinolines, Antimicrob. Agents Chemother. 49 (2005) 1076-1080;
-
[24]
(b) J.N. Sangshetti, F.A.K. Khan, A.A. Kulkarni, R. Arote, R.H. Patil, Antileishmanial drug discovery: comprehensive review of the last 10 years, RSC Adv. 5 (2015) 32376-32415.
-
[25]
[16] V.K. Marrapu, M. Mittal, R. Shivahare, S. Gupta, K. Bhandari, Synthesis and evaluation of new furanyl and thiophenyl azoles as antileishmanial agents, Eur. J. Med. Chem. 46 (2011) 1694-1700.
-
[26]
[17] O. Kayser, A.F. Kiderlen, H. Laatsch, S.L. Croft, In vitro leishmanicidal activity of monomeric and dimeric naphthoquinones, Acta Trop. 77 (2000) 307-314.
-
[27]
[18] (a) J.N. Sangshetti, D.B. Shinde, Synthesis of some novel 3-(1-(1-substitutedpiperidin-4-yl)-1H-1,2, 3-triazol-4-yl)-5-substituted phenyl-1,2,4-oxadiazoles as antifungal agents, Eur. J. Med. Chem. 46 (2011) 1040-1044;
-
[28]
(b) J.N. Sangshetti, R.R. Nagawade, D.B. Shinde, Synthesis of novel 3-(1-(1-substituted piperidin-4-yl)-1H-1,2, 3-triazol-4-yl)-1, 2, 4-oxadiazol-5(4H)-one as antifungal agents, Bioorg. Med. Chem. Lett. 19 (2009) 3564-3567;
-
[29]
(c) J.N. Sangshetti, D.B. Shinde, One pot synthesis and SAR of some novel 3-substituted 5,6-diphenyl-1, 2, 4-triazines as antifungal agents, Bioorg. Med. Chem. Lett. 20 (2010) 742-745;
-
[30]
(d) J.N. Sangshetti, P.P. Dharmadhikari, R.S. Chouthe, et al., Microwave assisted nano (ZnO-TiO2) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-substituted-1, 3,4-oxadiazol-2-yl)methyl)thieno[2,3-c] pyridine as antimicrobial agents, Bioorg. Med. Chem. Lett. 23 (2013) 2250-2253;
-
[31]
(e) Z. Zaheer, F.A.K. Khan, J.N. Sangshetti, R.H. Patil, Efficient one-pot synthesis, molecular docking and in silico ADME prediction of bis-(4-hydroxycoumarin-3-yl) methane derivatives as antileishmanial agents, EXCLI J. 14 (2015) 935-947.
-
[32]
[19] (a) J.N. Sangshetti, A.R. Chabukswar, D.B. Shinde, Microwave assisted one pot synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents, Bioorg. Med. Chem. Lett. 21 (2011) 444-448;
-
[33]
(b) J.N. Sangshetti, R.I. Shaikh, F.A.K. Khan, et al., Synthesis, antileishmanial activity and docking study of N'-substitutedbenzylidene-2-(6,7-dihydrothieno [3,2-c] pyridin-5(4H)-yl)acetohydrazides, Bioorg. Med. Chem. Lett. 24 (2014) 1605-1610;
-
[34]
(c) J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, M.G. Damale, D.B. Shinde, Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl) methyl)-4,5, 6,7-tetrahydrothieno[3,2-c] pyridine as antifungal agents, Chin. Chem. Lett. 25 (2014) 1033-1038;
-
[35]
(d) J.N. Sangshetti, F.A.K. Khan, R.H. Patil, et al., Biofilm inhibition of linezolid-like Schiff bases: synthesis, biological activity, molecular docking and in silico ADME prediction, Bioorg. Med. Chem. Lett. 25 (2015) 874-880;
-
[36]
(e) F.A.K. Khan, J.N. Sangshetti, Design, synthesis and molecular docking study of hybrid quinoline-4-YL-oxadiazoles/oxathiadiazoles as potent antifungal agents, Int. J. Pharm. Pharm. Sci. 7 (2015) 223-229.
-
[37]
[20] M. Silva, H.B. Napolitano, J. Ellena, et al., 3-(5,7-Dimethoxy-2,2-dimethyl-2Hbenzo[b] pyran-6-yl) propionic acid: a potential inhibitor against Leishmania, Acta Cryst. E59 (2003) o1575-o1577.
-
[38]
[21] A. Dutta, S. Bandyopadhyay, C. Mandal, M. Chatterjee, Development of a modified MTT assay for screening antimonial resistant field isolates of Indian visceral leishmaniasis, Parasitol. Int. 54 (2005) 119-122.
-
[39]
[22] M. Burits, F. Bucar, Antioxidant activity of Nigella sativa essential oil, Phytother. Res. 14 (2000) 323-328.
-
[40]
[23] F. Denizlt, R.T. Lang, Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability, J. Immunol. Methods 89 (1986) 271-277.
-
[41]
[24] VLife, Molecular Design Suite 4.3, VLife Sciences Technologies Pvt. Ltd, 2015 hwww.Vlifesciences.comi.
-
[42]
[25] C.L. Phillips, B. Ullman, R.G. Brennan, C.P. Hill, Crystal structures of adenine phosphoribosyltransferase from Leishmania donovani, EMBO J. 18 (1999) 3533-3545.
-
[43]
[26] C.A. Lipinski, L. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (2001) 3-26.
-
[44]
[27] Molinspiration Chemoinformatics Brastislava, Slovak Republic, 2015 Available from hhttp://www.molinspiration.com/cgi-bin/propertiesi.
-
[45]
[28] Y.H. Zhao, M.H. Abraham, J. Le, et al., Rate-limited steps of human oral absorption and QSAR studies, Pharm. Res. 19 (2002) 1446-1457.
-
[46]
[29] J.C. Jung, Y.J. Jung, O.S. Park, A convenient one-pot synthesis of 4-hydroxycoumarin, 4-hydroxythiocoumarin, and 4-hydroxyquinolin-2(1H)-one, Synth. Commun. 31 (2001) 1195-1200.
-
[47]
[30] (a) M. Mohsenimehr, M. Mamaghani, F. Shirini, M. Sheykhan, F.A. Moghaddam, One-pot synthesis of novel pyrido[2,3-d] pyrimidines using HAp-encapsulated-γ-Fe2O3 supported sulfonic acid nanocatalyst under solvent-free conditions, Chin. Chem. Lett. 25 (2014) 1387-1391;
-
[48]
(b) J.N. Sangshetti, F.A.K. Khan, C.S. Kute, Z. Zaheer, R.Z. Ahmed, One-pot threecomponent synthesis of 3-(α-aminobenzyl)-4-hydroxycoumarin derivatives using nanocrystalline TiO2 as reusable catalyst, Russ. J. Org. Chem. 51 (2015) 69-73;
-
[49]
(c) M.A. Ameen, S.M. Motamed, F.F. Abdel-latif, Highly efficient one-pot synthesis of dihydropyran heterocycles, Chin. Chem. Lett. 25 (2014) 212-214;
-
[50]
(d) J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, Z. Zaheer, R.Z. Ahmed, Watermediated oxalic acid catalysed one-pot synthesis of 2-(substituted phenyl) phthalazin-1(2H)-ones, J. Taibah Univ. Sci. 9 (2015) 548-554.
-
[51]
[31] (a) B. Han, X.D. Jia, X.L. Jin, et al., A CAN-initiated aza-Diels-Alder reaction for a facile synthesis of 4-amido-N-yl tetrahydroquinolines, Tetrahedron Lett. 47 (2006) 3545-3547;
-
[52]
(b) J.N. Sangshetti, N.D. Kokare, S.A. Kotharkara, D.B. Shinde, Ceric ammonium nitrate catalysed three component one-pot efficient synthesis of 2,4,5-triaryl-1Himidazoles, J. Chem. Sci. 120 (2008) 463-467;
-
[53]
(c) A.P.G. Nikalje, M.S. Ghodke, F.A.K. Khan, J.N. Sangshetti, CAN catalyzed onepot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents, Chin. Chem. Lett. 26 (2015) 108-112.
-
[54]
[32] B.D. Mather, K. Viswanathan, K.M. Miller, T.E. Long, Michael addition reactions in macromolecular design for emerging technologies, Prog. Polym. Sci. 31 (2006) 487-531.
-
[55]
[33] (a) IFPMA, Stability testing of new drug substances and drug products ICH Q1A (R2), in: International Conference on Harmonization, IFPMA, Geneva, 2003;
-
[56]
(b) K.K. Hotha, S. Phani, K. Reddy, V.K. Raju, L.K. Ravindranath, Forced degradation studies: practical approach-overview of regulatory guidance and literature for the drug products and drug substances, Int. Res. J. Pharm. 4 (2013) 78-85.
-
[57]
[34] M. Sankaran, C. Kumarasamy, U. Chokkalingam, P.S. Mohan, Synthesis, antioxidant and toxicological study of novel pyrimido quinoline derivatives from 4-hydroxy-3-acyl quinolin-2-one, Bioorg. Med. Chem. Lett. 20 (2010) 7147-7151.
-
[58]
[35] H.Y. Zhang, Structure-activity relationships and rational design strategies for radical-scavenging antioxidants, Curr. Comput. Aided Drug Des. 1 (2005) 257-273.
-
[59]
[36] R.W. Blakesley, Methods for preventing inhibition of nucleic acid synthesis by pyrophosphate, US6291164, 2001.
-
[60]
[37] P. Ertl, B. Rohde, P. Selzer, Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem. 43 (2000) 3714-3717.
-
[1]
-
-
[1]
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
-
[2]
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
-
[3]
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
-
[4]
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332
-
[5]
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
-
[6]
Fangping Yang , Jin Shi , Yuansong Wei , Qing Gao , Jingrui Shen , Lichen Yin , Haoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746
-
[7]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[8]
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
-
[9]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[10]
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
-
[11]
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
-
[12]
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
-
[13]
Guoping Yang , Zhoufu Lin , Xize Zhang , Jiawei Cao , Xuejiao Chen , Yufeng Liu , Xiaoling Lin , Ke Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274
-
[14]
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
-
[15]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[16]
Guo-Ping Yin , Ya-Juan Li , Li Zhang , Ling-Gao Zeng , Xue-Mei Liu , Chang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035
-
[17]
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
-
[18]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[19]
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
-
[20]
Qi Tan , Run-Zhu Fan , Wencong Yang , Ge Zou , Tao Chen , Jianying Wu , Bo Wang , Sheng Yin , Zhigang She . (+)/(−)-Mycosphatide A, a pair of highly oxidized polyketides with lipid-lowering activity from the mangrove endophytic fungus Mycosphaerella sp. SYSU-DZG01. Chinese Chemical Letters, 2024, 35(9): 109390-. doi: 10.1016/j.cclet.2023.109390
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(593)
- HTML views(3)