Citation: Yan Liu, Qiu-Ling Shi, Jing-Li Yuan. Synthesis of a di(2-picolyl)amino-β-diketone dual-functional ligand that can coordinate to europium(III) for responding to copper(II) and sulfide ions[J]. Chinese Chemical Letters, ;2015, 26(12): 1485-1489. doi: 10.1016/j.cclet.2015.10.021 shu

Synthesis of a di(2-picolyl)amino-β-diketone dual-functional ligand that can coordinate to europium(III) for responding to copper(II) and sulfide ions

  • Corresponding author: Yan Liu,  Jing-Li Yuan, 
  • Received Date: 30 July 2015
    Available Online: 27 October 2015

  • Lanthanide complex-based luminescent probes/chemosensors have shown great utilities in various biological and environmental assays with time-resolved detection mode to eliminate background noises. In this work, by conjugating di(2-picolyl)amine (DPA) with a tetradentate β-diketone 1,2-bis[4'- (1",1",1",2",2"-pentafluoro-3",5"-pentanedion-5"-yl)benzyl]-4-chlorosulfo-benzene (BPPBCB), a novel dual-functional ligand that can coordinate to Eu3+ for responding to Cu2+ and S2- ions in aqueous media, DPA-BPPBCB, has been designed and synthesized. The β-diketone moiety of DPA-BPPBCB can form a strongly luminescent complex with Eu3+. Upon reaction with Cu2+, accompanied by the formation of heterobimetallic complex Cu2+-DPA-BPPBCB-Eu3+, the Eu3+ luminescence was quenched. While in the presence of S2-, owing to the high affinity of S2- to Cu2+, stable CuS was formed, which resulted in the release of Cu2+ from Cu2+-DPA-BPPBCB-Eu3+, to restore the luminescence of the Eu3+ complex. This unique “on-off-on” luminescence response of the Eu3+ complex enabled Cu2+ and S2- ions in aqueous media to be detected with time-resolved luminescence detection mode.
  • 加载中
    1. [1]

      [1] I. Hemmilá, V.M. Mukkala, Time-resolution in fluorometry technologies, labels, and applications in bioanalytical assays, Crit. Rev. Clin. Lab. Sci. 38 (2001) 441- 519.

    2. [2]

      [2] J.L. Yuan, G.L. Wang, Lanthanide-based luminescence probes and time-resolved luminescence bioassays, Trends Anal. Chem. 25 (2006) 490-500.

    3. [3]

      [3] J.C.G. Bü nzli, Lanthanide luminescence for biomedical analyses and imaging, Chem. Rev. 110 (2010) 2729-2755.

    4. [4]

      [4] M.C. Heffern, L.M. Matosziuk, T.J. Meade, Lanthanide probes for bioresponsive imaging, Chem. Rev. 114 (2014) 4496-4539.

    5. [5]

      [5] H. Siitari, I. Hemmilä, E. Soini,T.Lövgren, V.Koistinen,Detection of hepatitisB surface antigen using time-resolved fluoroimmunoassay, Nature 301 (1983) 258-260.

    6. [6]

      [6] E. Soini, T. Lö vgren, C.B. Reimer, Time-resolved fluorescence of lanthanide probes and applications in biotechnology, CRC Crit. Rev. Anal. Chem. 18 (1987) 105-154.

    7. [7]

      [7] J.L. Yuan, K. Matsumoto, Synthesis of a new tetradentate β-diketonate-europium chelate and its application for time-resolved fluorimetry of albumin, J. Pharm. Biomed. Anal. 15 (1997) 1397-1403.

    8. [8]

      [8] J.L. Yuan, K. Matsumoto, H. Kimura, A new tetradentate β-diketonate-europium chelate that can be covalently bound to proteins for highly sensitive timeresolved fluoroimmunoassay, Anal. Chem. 70 (1998) 596-601.

    9. [9]

      [9] R. Connally, D. Veal, J. Piper, High resolution detection of fluorescently labeled microorganisms in environmental samples using time-resolved fluorescence microscopy, FEMS Microbiol. Ecol. 41 (2002) 239-245.

    10. [10]

      [10] F.B. Wu, C. Zhang, A new europium β-diketone chelate for ultrasensitive timeresolved fluorescence immunoassays, Anal. Biochem. 311 (2002) 57-67.

    11. [11]

      [11] F.B. Wu, S.Q. Han, C. Zhang, Y.F. He, Synthesis of a highly fluorescent β-diketoneeuropium chelate and its utility in time-resolved fluoroimmunoassay of serum total thyroxine, Anal. Chem. 74 (2002) 5882-5889.

    12. [12]

      [12] L. Zhang, Y.J. Wang, Z.Q. Ye, D. Jin, J.L. Yuan, New class of tetradentate β-diketonate-europium complexes that can be covalently bound to proteins for time-gated fluorometric application, Bioconjug. Chem. 23 (2012) 1244-1251.

    13. [13]

      [13] N. Shao, J.Y. Jin, G.L. Wang, et al., Europium(III) complex-based luminescent sensing probes for multi-phosphate anions: modulating selectivity by ligand choice, Chem. Commun. (2008) 1127-1129.

    14. [14]

      [14] Z.C. Wen, R. Yang, H. He, Y.B. Jiang, A highly selective charge transfer fluoroionophore for Cu2+, Chem. Commun. (2006) 106-108.

    15. [15]

      [15] A.F. Li,H.He,Y.B.Ruan,et al.,OxidativecyclizationofN-acylhydrazones.Development of highly selective turn-on fluorescent chemodosimeters for Cu2+,Org. Biomol.Chem. 7 (2009) 193-200.

    16. [16]

      [16] J. Jo, H.Y. Lee, W. Liu, et al., Reactivity-based detection of copper(II) ion in water: oxidative cyclization of azoaromatics as fluorescence turn-on signaling mechanism, J. Am. Chem. Soc. 134 (2012) 16000-16007.

    17. [17]

      [17] C.H. Zong, K.L. Ai, G. Zhang, H.W. Li, L.H. Lu, Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+, Anal. Chem. 83 (2011) 3126-3132.

    18. [18]

      [18] L. Yuan, W.Y. Lin, B. Chen, Y.A. Xie, Development of FRET-based ratiometric fluorescent Cu2+ chemodosimeters and the applications for living cell imaging, Org. Lett. 14 (2012) 432-435.

    19. [19]

      [19] N. Li, Y. Xiang, A.J. Tong, Highly sensitive and selective “turn-on” fluorescent chemodosimeter for Cu2+ in water via Cu2+-promoted hydrolysis of lactone moiety in coumarin, Chem. Commun. 46 (2010) 3363-3365.

    20. [20]

      [20] Y. Fu, Q.C. Feng, X.J. Jiang, et al., New fluorescent sensor for Cu2+ and S2- in 100% aqueous solution based on displacement approach, Dalton Trans. 43 (2014) 5815-5822.

    21. [21]

      [21] M.G. Choi, S. Cha, H. Lee, H.L. Jeon, S.K. Chang, Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein, Chem. Commun. (2009) 7390-7392.

    22. [22]

      [22] R. Zhang, X.J. Yu, Y.J. Yin, et al., Development of a heterobimetallic Ru(II)-Cu(II) complex for highly selective and sensitive luminescence sensing of sulfide anions, Anal. Chim. Acta 691 (2011) 83-88.

    23. [23]

      [23] X.W. Cao, W.Y. Lin, L.W. He, A near-infrared fluorescence turn-on sensor for sulfide anions, Org. Lett. 13 (2011) 4716-4719.

    24. [24]

      [24] Z.S. Wu, Z. Li, L. Yang, J.H. Han, S.F. Han, Fluorogenic detection of hydrogen sulfide via reductive unmasking of o-azidomethylbenzoyl-coumarin conjugate, Chem. Commun. 48 (2012) 10120-10122.

    25. [25]

      [25] K. Sasakura, K. Hanaoka, N. Shibuya, et al., Development of a highly selective fluorescence probe for hydrogen sulfide, J. Am. Chem. Soc. 133 (2011) 18003-18005.

    26. [26]

      [26] Z.Q. Ye, X. An, B. Song, et al., A novel dinuclear ruthenium(II)-copper(II) complex-based luminescence probe for hydrogen sulfide, Dalton Trans. 43 (2014) 13055-13060.

  • 加载中
    1. [1]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    2. [2]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    3. [3]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    4. [4]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    5. [5]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    6. [6]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    7. [7]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    8. [8]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    9. [9]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    10. [10]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    11. [11]

      Zhengyi ShiJie YinYang XiaoZhangrong HouFei SongJianping WangQingyi TongChangxing QiYonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458

    12. [12]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    13. [13]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    14. [14]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    15. [15]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    16. [16]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    17. [17]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    18. [18]

      Xue-Jiao WangJun-Li XinHong XiangZe-Yu ZhaoYu-Hang HeHaibo WangGuangyao MeiYi-Cheng MaoJuan XiongJin-Feng Hu . Holotrichones A and B, potent anti-leukemic lindenane-type sesquiterpene trimers with unprecedented complex carbon skeletons from a rare Chloranthus species. Chinese Chemical Letters, 2024, 35(12): 109682-. doi: 10.1016/j.cclet.2024.109682

    19. [19]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    20. [20]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

Metrics
  • PDF Downloads(0)
  • Abstract views(642)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return