Citation: Xia Li, Rong-Juan Feng, Ji-Jin Wang, Zhen Zhang, Zhou Lu, Yuan Guo. Role of refractive index in sum frequency generation intensity of salt solution interfaces[J]. Chinese Chemical Letters, ;2015, 26(12): 1542-1546. doi: 10.1016/j.cclet.2015.10.020 shu

Role of refractive index in sum frequency generation intensity of salt solution interfaces

  • Corresponding author: Zhou Lu,  Yuan Guo, 
  • Received Date: 25 September 2015
    Available Online: 23 October 2015

  • Sum frequency generation spectroscopy (SFG) has been widely used to study the interfacial chemistry of aqueous salt solutions of biological or environmental importance. Most of the SFG data analysis used the same bulk refractive index for different salt concentrations despite of the variations of the refractive indices. Here we systematically investigate the influence of the refractive index on the SFG intensities at various experimental conditions. It is discovered that the SFG intensities are the most sensitive to the refractive index at solid/liquid interfaces nearby the total internal reflection geometries. At air/liquid interfaces, the effect of the refractive indices is also nonegligible. Consequently some important SFG results, such as the response of water structures to the ionic strength at the SiO2/aqueous interfaces, are necessary to be reevaluated. These conclusions on the effect of the small variations of the refractive index are generally useful for the common practice of SFG data analysis.
  • 加载中
    1. [1]

      [1] E.M. Knipping, M.J. Lakin, K.L. Foster, et al., Experiments and simulations of ionenhanced interfacial chemistry on aqueous NaCl aerosols, Science 288 (2000) 301-306.

    2. [2]

      [2] Q. Du, E. Freysz, Y.R. Shen, Vibrational-spectra of water-molecules at quartz water interfaces, Phys. Rev. Lett. 72 (1994) 238-241.

    3. [3]

      [3] K.C. Jena, P.A. Covert, D.K. Hore, The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions, J. Phys. Chem. Lett. 2 (2011) 1056-1061.

    4. [4]

      [4] Y. Zhang, P.S. Cremer, Chemistry of Hofmeister anions and osmolytes, Annu. Rev. Phys. Chem. 61 (2010) 63-83.

    5. [5]

      [5] H.F. Wang, W. Gan, R. Lu, et al., Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS), Int. Rev. Phys. Chem. 24 (2005) 191-256.

    6. [6]

      [6] Q. Du, E. Freysz, Y.R. Shen, Surface vibrational spectroscopic studies of hydrogenbonding and hydrophobicity, Science 264 (1994) 826-828.

    7. [7]

      [7] D.F. Liu, G. Ma, L.M. Levering, et al., Vibrational spectroscopy of aqueous sodium halide solutions and air-liquid interfaces: observation of increased interfacial depth, J. Phys. Chem. B 108 (2004) 2252-2260.

    8. [8]

      [8] X. Chen, T. Yang, S. Kataoka, et al., Specific ion effects on interfacial water structure near macromolecules, J. Am. Chem. Soc. 129 (2007) 12272-12279.

    9. [9]

      [9] R.R. Feng, H.T. Bian, Y. Guo, et al., Spectroscopic evidence for the specific Na+ and K+ interactions with the hydrogen-bonded water molecules at the electrolyte aqueous solution surfaces, J. Chem. Phys. 130 (2009) 134710.

    10. [10]

      [10] C.S. Tian, S.J. Byrnes, H.L. Han, et al., Surface propensities of atmospherically relevant ions in salt solutions revealed by phase-sensitive sum frequency vibrational spectroscopy, J. Phys. Chem. Lett. 2 (2011) 1946-1949.

    11. [11]

      [11] Y.R. Shen, Surface spectroscopy by nonlinear optics, in: T.W. Hansch, M. Inguscio (Eds.), Frontiers in Laser Spectroscopy, Elsevier Science Publ. B. V., Amsterdam, 1994, pp. 139-165.

    12. [12]

      [12] E.A. Raymond, G.L. Richmond, Probing the molecular structure and bonding of the surface of aqueous salt solutions, J. Phys. Chem. B 108 (2004) 5051-5059.

    13. [13]

      [13] M. Xu, R. Spinney, H.C. Allen, Water structure at the air-aqueous interface of divalent cation and nitrate solutions, J. Phys. Chem. B 113 (2009) 4102-4110.

    14. [14]

      [14] K.C. Jena, D.K. Hore, Variation of ionic strength reveals the interfacial water structure at a charged mineral surface, J. Phys. Chem. C 113 (2009) 15364-15372.

    15. [15]

      [15] P.A. Covert, K.C. Jena, D.K. Hore, Throwing salt into the mix: altering interfacial water structure by electrolyte addition, J. Phys. Chem. Lett. 5 (2014) 143-148.

    16. [16]

      [16] X. Zhuang, P.B. Miranda, D. Kim, et al., Mapping molecular orientation and conformation at interfaces by surface nonlinear optics, Phys. Rev. B: Condens. Matter 59 (1999) 12632-12640.

    17. [17]

      [17] R.L. York, Y. Li, G.J. Holinga, et al., Sum frequency generation vibrational spectra: the influence of experimental geometry for an absorptive medium or media, J. Phys. Chem. A 113 (2009) 2768-2774.

    18. [18]

      [18] R.R. Feng, Y. Guo, H.F. Wang, Reorientation of the “free OH” group in the topmost layer of air/water interface of sodium fluoride aqueous solution probed with sum-frequency generation vibrational spectroscopy, J. Chem. Phys. 141 (2014) 18C507.

    19. [19]

      [19] A. Eftekhari-Bafrooei, E. Borguet, Effect of electric fields on the ultrafast vibrational relaxation of water at a charged solid-liquid interface as probed by vibrational sum frequency generation, J. Phys. Chem. Lett. 2 (2011) 1353-1358.

  • 加载中
    1. [1]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    2. [2]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    3. [3]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    4. [4]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    5. [5]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    6. [6]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    7. [7]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    8. [8]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    9. [9]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    10. [10]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    11. [11]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    12. [12]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    13. [13]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

Metrics
  • PDF Downloads(0)
  • Abstract views(589)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return