Citation: Hui-Qiao Wang, Zhao-Xiang Deng. Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology[J]. Chinese Chemical Letters, ;2015, 26(12): 1435-1438. doi: 10.1016/j.cclet.2015.10.019 shu

Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology

  • Corresponding author: Zhao-Xiang Deng, 
  • Received Date: 31 August 2015
    Available Online: 27 October 2015

  • The past years have witnessed a rapid development of DNA nanotechnology in nanomaterials science with a central focus on programmable material construction on the nanoscale. An efficient method is therefore highly desirable (but challenging) for analytical/preparative purification of DNA-conjugated nano-objects and their DNA-assemblies. In this regard, agarose gel electrophoresis, a traditional technique that has been invented for biomacromolecule separation, has found many innovative uses. This includes shape, size, charge, and ligand-valence separations of nanoparticle building blocks as well as monitoring a self-assembly process towards product identification and purification.
  • 加载中
    1. [1]

      [1] Z.H. Nie, A. Petukhova, E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nat. Nanotech. 5 (2010) 15-25.

    2. [2]

      [2] M.R. Jones, N.C. Seeman, C.A. Mirkin, Programmable materials and the nature of the DNA bond, Science 347 (2015) 1260901.

    3. [3]

      [3] N. Surugau, P.L. Urban, Electrophoretic methods for separation of nanoparticles, J. Sep. Sci. 32 (2009) 1889-1906.

    4. [4]

      [4] M. Hanauer, S. Pierrat, I. Zins, et al., Separation of nanoparticles by gel electrophoresis according to size-and shape, Nano Lett. 7 (2007) 2881-2885.

    5. [5]

      [5] X.Y. Xu, K.K. Caswell, E. Tucker, et al., Size and shape separation of gold nanoparticles with preparative gel electrophoresis, J. Chromatogr. A 1167 (2007) 35- 41.

    6. [6]

      [6] D. Zanchet, C.M. Micheel, W.J. Parak, et al., Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates, Nano Lett. 1 (2001) 32-35.

    7. [7]

      [7] D. Zanchet, C.M. Micheel, W.J. Parak, et al., Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings, J. Phys. Chem. B 106 (2002) 11758- 11763.

    8. [8]

      [8] S.J. Tan, M.J. Campolongo, D. Luo, W.L. Cheng, Building plasmonic nanostructures with DNA, Nat. Nanotechnol. 6 (2011) 268-276.

    9. [9]

      [9] J.S. Lee, A.K.R. Lytton-Jean, S.J. Hurst, C.A. Mirkin, Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties, Nano Lett. 7 (2007) 2112-2115.

    10. [10]

      [10] S. Pal, J. Sharma, H. Yan, Y. Liu, Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters, Chem. Commun. (2009) 6059-6061.

    11. [11]

      [11] C. Lin, H. Gong, L.Z. Fan, X.H. Li, Application of DNA/Ag nanocluster fluorescent probe for the detection of Pb2+, Acta Chim. Sin. 72 (2014) 704-708.

    12. [12]

      [12] Y.Q. Zheng, Y.L. Li, Z.X. Deng, Silver nanoparticle-DNA bionanoconjugates bearing a discrete number of DNA ligands, Chem. Commun. 48 (2012) 6160-6162.

    13. [13]

      [13] Y.L. Li, Y.Q. Zheng, M. Gong, Z.X. Deng, Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au-Pt bimetallic superstructures, Chem. Commun. 48 (2012) 3727-3729.

    14. [14]

      [14] H.Q. Wang, Y.L. Li, M. Gong, Z.X. Deng, Core solution: a strategy towards gold core/ non-gold shell nanoparticles bearing strict DNA-valences for programmable nanoassembly, Chem. Sci. 5 (2014) 1015-1020.

    15. [15]

      [15] H.M.J. Carstairs, K. Lymperopoulos, A.N. Kapanidis, J. Bath, A.J. Turberfield, DNA monofunctionalization of quantum dots, ChemBioChem 10 (2009) 1781-1783.

    16. [16]

      [16] A. Fu, C.M. Micheel, J. Cha, et al., Discrete nanostructures of quantum dots/Au with DNA, J. Am. Chem. Soc. 126 (2004) 10832-10833.

    17. [17]

      [17] Z.X. Deng, Y. Tian, S.H. Lee, et al., DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays, Angew. Chem. Int. Ed. 44 (2005) 3582-3585.

    18. [18]

      [18] H.Q. Wang, Y.L. Li, M. Liu, M. Gong, Z.X. Deng, Overcoming the coupling dilemma in DNA-programmable nanoparticle assembly by “Ag + soldering”, Small 11 (2015) 2247-2251.

    19. [19]

      [19] P. Liu, X.H. Yang, Q. Wang, et al., Sensitive detection of DNA methyltransferase activity based on rolling circle amplification technology, Chin. Chem. Lett. 25 (2014) 1047-1051.

    20. [20]

      [20] Y. Yang, X. Bai, L.L. Fang, Z.X. Deng, Fabrication of monodisperse ‘core-satellite' nanostructures by DNA-programming: a novel class of superstructured building blocks for hierarchical nanoassembly, Chin. J. Chem. Phys. 26 (2013) 601-606.

    21. [21]

      [21] P.W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature 440 (2006) 297-302.

    22. [22]

      [22] T. Liedl, B. Hö gberg, J. Tytell, et al., Self-assembly of three-dimensional prestressed tensegrity structures from DNA, Nat. Nanotechnol. 5 (2010) 520-524.

    23. [23]

      [23] D.R. Han, S. Pal, J. Nangreave, et al., DNA origami with complex curvatures in three-dimensional space, Science 332 (2011) 342-346.

    24. [24]

      [24] Z. Zhao, E.L. Jacovetty, Y. Liu, H. Yan, Encapsulation of gold nanoparticles in a DNA origami cage, Angew. Chem. Int. Ed. 50 (2011) 2041-2044.

    25. [25]

      [25] X.B. Shen, C. Song, J.Y. Wang, et al., Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures, J. Am. Chem. Soc. 134 (2012) 146-149.

    26. [26]

      [26] X.B. Shen, A. Asenjo-Garcia, Q. Liu, et al., Three-dimensional plasmonic chiral tetramers assembled by DNA origami, Nano Lett. 13 (2013) 2128-2133.

    27. [27]

      [27] A. Kuzyk, R. Schreiber, Z. Fan, et al., DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response, Nature 483 (2012) 311-314.

    28. [28]

      [28] X. Lan, Z. Chen, G.L. Dai, et al., Bifacial DNA origami-directed discrete, threedimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality, J. Am. Chem. Soc. 135 (2013) 11441-11444.

    29. [29]

      [29] Y.L. Li, X.G. Han, Z.X. Deng, Grafting SWNTs with highly hybridizable DNA sequences: potential building blocks for DNA-programmed material assembly, Angew. Chem. Int. Ed. 46 (2007) 7481-7484.

    30. [30]

      [30] Y. Wang, D.M. Zhou, Z. Wu, et al., Terminal protection of small molecule-linked ssDNA-SWNT nanoassembly for sensitive detection of small molecule and protein interaction, Chin. Chem. Lett. 24 (2013) 107-110.

  • 加载中
    1. [1]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

Metrics
  • PDF Downloads(0)
  • Abstract views(592)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return