Citation: Ting Yang, Yi-Kun Li, Ming-Li Chen, Jian-Hua Wang. Supported carbon dots decorated with metallothionein for selective cadmium adsorption and removal[J]. Chinese Chemical Letters, ;2015, 26(12): 1496-1501. doi: 10.1016/j.cclet.2015.10.018
-
Carbon dots are prepared and immobilized onto spherical SiO2 through a one-step thermal oxidation and then decorated with metallothionein (MT), a protein with high affinity towards thiophilic metals. The MT-carbon dots composites are characterized by means of FT-IR, SEM and TGA, giving rise to a MT loading amount of 823 μg g-1. The adsorption of cadmium by the composites is a fast process and follows Langmuir model. In comparison with native SiO2, a 2- and 2.4-folds improvement on the static and dynamic adsorption capacity of the composites for cadmium are obtained, respectively. Moreover, the adsorption efficiency is not affected by the presence of other metals. Finally, the composites are successfully applied for the removal of cadmium in a series of environmental water samples.
-
Keywords:
- Carbon dots
-
-
[1]
[1] M. Khairy, S.A. El-Safty, M.A. Shenashen, Environmental remediation and monitoring of cadmium, TrAC Trend. Anal. Chem. 62 (2014) 56-68.
-
[2]
[2] A. Varriale, M. Staiano, M. Rossi, S. D'Auria, High-affinity binding of cadmium ions by mouse metallothionein prompting the design of a reversed-displacement protein-based fluorescence biosensor for cadmium detection, Anal. Chem. 79 (2007) 5760-5762.
-
[3]
[3] R. Kumar, J. Chawla, Removal of cadmium ion from water/wastewater by nano-metal oxides: a review, Water Qual. Exposure Health 5 (2014) 215- 226.
-
[4]
[4] B.A. Fowler, Monitoring of human populations for early markers of cadmium toxicity: a review, Toxicol. Appl. Pharmacol. 238 (2009) 294-300.
-
[5]
[5] WHO, Guidelines for Drinking Water Quality: Recommendations, WHO, Geneva, 2008, pp. 317-318.
-
[6]
[6] EPA, The Provision and Quality of Drinking Water in Ireland: A Report for the Year 2008-2009, EPA, 2008p. 102.
-
[7]
[7] L.M. Ravelo-Pé rez, A.V. Herrera-Herrera, J. Herná ndez-Borges, M.Á . Rodríguez- Delgado, Carbon nanotubes: solid-phase extraction, J. Chromatogr. A 1217 (2010) 2618-2641.
-
[8]
[8] G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review, Sep. Purif. Technol. 58 (2007) 224-231.
-
[9]
[9] M. Musameh, M. Hickey, I. Kyratzis, Carbon nanotube-based extraction and electrochemical detection of heavy metals, Res. Chem. Intermed. 37 (2011) 675-689.
-
[10]
[10] R. Kumar, J. Chawla, I. Kaur, Removal of cadmium ion from wastewater by carbonbased nanosorbents: a review, J. Water Health 13 (2015) 18-33.
-
[11]
[11] R. Kumar, M.A. Khan, N. Haq, Application of carbon nanotubes in heavy metals remediation, Crit. Rev. Environ. Sci. Technol. 44 (2013) 1000-1035.
-
[12]
[12] G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Graphene oxide and its application as an adsorbent for wastewater treatment, J. Chem. Technol. Biotechnol. 89 (2014) 196-205.
-
[13]
[13] Y. Cao, X. Li, Adsorption of graphene for the removal of inorganic pollutants in water purification: a review, Adsorption 20 (2014) 713-727.
-
[14]
[14] M. Yusuf, F.M. Elfghi, S.A. Zaidi, E.C. Abdullah, M.A. Khan, Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: a systematic and comprehensive overview, RSC Adv. 5 (2015) 50392-50420.
-
[15]
[15] Y.H. Li, S. Wang, Z. Luan, et al., Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon 41 (2003) 1057-1062.
-
[16]
[16] G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol. 45 (2011) 10454-10462.
-
[17]
[17] Q. Liu, J. Shi, M. Cheng, et al., Preparation of graphene-encapsulated magnetic microspheres for protein/peptide enrichment and MALDI-TOF MS analysis, Chem. Commun. 48 (2012) 1874-1876.
-
[18]
[18] J.W. Liu, Q. Zhang, X.W. Chen, J.H. Wang, Surface assembly of graphene oxide nanosheets on SiO2 particles for the selective isolation of hemoglobin, Chem.— Eur. J. 17 (2011) 4864-4870.
-
[19]
[19] Y.H. Li, J. Ding, Z. Luan, et al., Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes, Carbon 41 (2003) 2787-2792.
-
[20]
[20] R. Sitko, E. Turek, B. Zawisza, et al., Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton Trans. 42 (2013) 5682-5689.
-
[21]
[21] C.D. Klaassen, J. Liu, S. Choudhuri, Metallothionein: an intracellular protein to protect against cadmium toxicity, Annu. Rev. Pharmacol. Toxicol. 39 (1999) 267- 294.
-
[22]
[22] T. Yang, L.H. Liu, J.W. Liu, M.L. Chen, J.H. Wang, Cyanobacterium metallothionein decorated graphene oxide nanosheets for highly selective adsorption of ultratrace cadmium, J. Mater. Chem. 22 (2012) 21909-21916.
-
[23]
[23] H. Li, Z. Kang, Y. Liu, S.-T. Lee, Carbon nanodots: synthesis, properties and applications, J Mater. Chem. 22 (2012) 24230-24253.
-
[24]
[24] S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev. 44 (2015) 362-381.
-
[25]
[25] A.B. Bourlinos, A. Stassinopoulos, D. Anglos, et al., Photoluminescent carbogenic dots, Chem. Mater. 20 (2008) 4539-4541.
-
[26]
[26] G.L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82 (1959) 70-77.
-
[27]
[27] M. Capdevila, R. Bofill, Ò . Palacios, S. Atrian, State-of-the-art of metallothioneins at the beginning of the 21st century, Coord. Chem. Rev. 256 (2012) 46-62.
-
[1]
-
-
[1]
Qiang Fu , Shouhong Sun , Kangzhi Lu , Ning Li , Zhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136
-
[2]
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
-
[3]
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
-
[4]
Yuan Liu , Boyang Wang , Yaxin Li , Weidong Li , Siyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426
-
[5]
Jianye Kang , Xinyu Yang , Xuhao Yang , Jiahui Sun , Yuhang Liu , Shutao Wang , Wenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297
-
[6]
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
-
[7]
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
-
[8]
Qiang Li , Jiangbo Fan , Hongkai Mu , Lin Chen , Yongzhen Yang , Shiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947
-
[9]
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
-
[10]
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
-
[11]
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
-
[12]
Liwen Wang , Boyang Wang , Siyu Lu , Shubo Lv , Xiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497
-
[13]
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
-
[14]
Rui Cheng , Xin Huang , Tingting Zhang , Jiazhuang Guo , Jian Yu , Su Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278
-
[15]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[16]
Binyang Qin , Mengqi Wang , Shimei Wu , Yining Li , Chilin Liu , Yufei Zhang , Haosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921
-
[17]
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
-
[18]
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
-
[19]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[20]
Jie Wu , Xiaoqing Yu , Guoxing Li , Su Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(627)
- HTML views(17)