Citation: Chun-Guang Yang, Ru-Yi Pan, Zhang-Run Xu. A single-cell encapsulation method based on a microfluidic multi-step droplet splitting system[J]. Chinese Chemical Letters, ;2015, 26(12): 1450-1454. doi: 10.1016/j.cclet.2015.10.016
-
Single cell analysis is of great significance to understand the physiological activity of organisms. Microfluidic droplet is an ideal analytical platform for single-cell analysis. We developed a microfluidic droplet splitting system integrated with a flow-focusing structure and multi-step splitting structures to form 8-line droplets and encapsulate single cells in the droplets. Droplet generation frequency reached 1021 Hz with the aqueous phase flow rate of 1 μL/min and the oil phase flow rate of 15 μL/min. Relative standard deviation of the droplet size was less than 5% in a single channel, while less than 6% in all the 8 channels. The system was used for encapsulating human whole blood cells. A single-cell encapsulation efficiency of 31% was obtained with the blood cell concentration of 2.5×104 cells/μL, and the multicellular droplet percentage was only 1.3%. The multi-step droplet splitting system for single cell encapsulation featured simple structure and high throughput.
-
Keywords:
- Microfluidic droplets
-
-
[1]
[1] M.E. Lidstrom, D.R. Meldrum, Life-on-a-chip, Nat. Rev. Microbiol. 1 (2003) 158-164.
-
[2]
[2] A. Manz, N. Graber, H.M. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing, Sens. Actuators, B: Chem. 1 (1990) 244-248.
-
[3]
[3] R.N. Zare, S. Kim, Microfluidic platforms for single-cell analysis, Annu. Rev. Biomed. Eng. 12 (2010) 187-201.
-
[4]
[4] Y. Liu, A.K. Singh, Microfluidic platforms for single-cell protein analysis, JALA 18 (2013) 446-454.
-
[5]
[5] A.M. Thompson, A.L. Paguirigan, J.E. Kreutz, et al., Microfluidics for single-cell genetic analysis, Lab Chip 14 (2014) 3135-3142.
-
[6]
[6] M.Y. He, J.S. Edgar, G.D.M. Jeffries, et al., Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets, Anal. Chem. 77 (2005) 1539-1544.
-
[7]
[7] S.K. Fan, P.W. Huang, T.T. Wang, et al., Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting, Lab Chip 8 (2008) 1325-1331.
-
[8]
[8] U. Demirci, G. Montesano, Single cell epitaxy by acoustic picolitre droplets, Lab Chip 7 (2007) 1139-1145.
-
[9]
[9] Y. Zeng, R. Novak, J. Shuga, et al., High-performance single cell genetic analysis using microfluidic emulsion generator arrays, Anal. Chem. 82 (2010) 3183-3190.
-
[10]
[10] S.Q. Gu, Y.X. Zhang, Y. Zhu, et al., Multifunctional picoliter droplet manipulation platform and its application in single cell analysis, Anal. Chem. 83 (2011) 7570-7576.
-
[11]
[11] S. Koester, F.E. Angile, H. Duan, et al., Drop-based microfluidic devices for encapsulation of single cells, Lab Chip 8 (2008) 1110-1115.
-
[12]
[12] E. Um, S.G. Lee, J.K. Park, Random breakup of microdroplets for single-cell encapsulation, Appl. Phys. Lett. 97 (2010) 153703-1-153703-3.
-
[13]
[13] M. Chabert, J.L. Viovy, Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 3191-3196.
-
[14]
[14] J. Clausell-Tormos, D. Lieber, J.C. Baret, et al., Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms, Chem. Biol. 15 (2008) 427-437.
-
[15]
[15] J.F. Edd, D. Di Carlo, K.J. Humphry, et al., Controlled encapsulation of single-cells into monodisperse picolitre drops, Lab Chip 8 (2008) 1262-1264.
-
[16]
[16] E.W.M. Kemna, R.M. Schoeman, F. Wolbers, et al., High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel, Lab Chip 12 (2012) 2881-2887.
-
[17]
[17] D.R. Link, S.L. Anna, D.A. Weitz, et al., Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. 92 (2004) 054503-1-054503-4.
-
[18]
[18] C.G. Yang, Z.R. Xu, A.P. Lee, et al., A microfluidic concentration-gradient droplet array generator for the production of multi-color nanoparticles, Lab Chip 13 (2013) 2815-2820.
-
[19]
[19] A.R. Abate, D.A. Weitz, Faster multiple emulsification with drop splitting, Lab Chip 11 (2011) 1911-1915.
-
[20]
[20] J.C. McDonald, D.C. Duffy, J.R. Anderson, et al., Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21 (2000) 27-40.
-
[21]
[21] H. Song, J.D. Tice, R.F. Ismagilov, A microfluidic system for controlling reaction networks in time, Angew. Chem. Int. Ed. 42 (2003) 768-772.
-
[22]
[22] D. Di Carlo, D. Irimia, R.G. Tompkins, et al., Continuous inertial focusing, ordering, and separation of particles in microchannels, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 18892-18897.
-
[23]
[23] C.G. Yang, Z.R. Xu, J.H. Wang, Manipulation of droplets in microfluidic systems, Trac-trend. Anal. Chem. 29 (2010) 141-157.
-
[1]
-
-
[1]
Wei-Tao Dou , Qing-Wen Zeng , Yan Kang , Haidong Jia , Yulian Niu , Jinglong Wang , Lin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995
-
[2]
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
-
[3]
Jun Lu , Jinrui Yan , Yaohao Guo , Junjie Qiu , Shuangliang Zhao , Bo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876
-
[4]
Gaowa Xing , Yuting Shang , Xiaorui Wang , Zengnan Wu , Qiang Zhang , Jiebing Ai , Qiaosheng Pu , Ling Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491
-
[5]
Cheng Wang , Ji Wang , Dong Liu , Zhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302
-
[6]
Xing Tian , Di Wu , Wanheng Wei , Guifu Dai , Zhanxian Li , Benhua Wang , Mingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912
-
[7]
Feng Wu , Xuemin Kong , Yixuan Liu , Shuli Wang , Zhong Chen , Xu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754
-
[8]
Han-Min Wang , Yan-Chen Li , Lu-Lu Sun , Ming-Ye Tang , Jia Liu , Jiahao Cai , Lei Dong , Jia Li , Yi Zang , Hai-Hao Han , Xiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(583)
- HTML views(18)