Citation: Hong-Tao Zhang, Li-Jun Gu, Xiang-Zhong Huang, Rui Wang, Cheng Jin, Gan-Peng Li. Synthesis of indol-3-yl aryl ketones through visible-light-mediated carbonylation[J]. Chinese Chemical Letters, ;2016, 27(02): 256-260. doi: 10.1016/j.cclet.2015.10.012 shu

Synthesis of indol-3-yl aryl ketones through visible-light-mediated carbonylation

  • Corresponding author: Li-Jun Gu,  Gan-Peng Li, 
  • Received Date: 20 July 2015
    Available Online: 18 September 2015

    Fund Project: We are grateful for the financial support from the Educational Bureau of Yunnan Province (No. 2010Y431) (No. 2010Y431)the State Ethnic Affairs Commission ([8_TD$DIF]No. 12YNZ05). ([8_TD$DIF]No. 12YNZ05)

  • A visible-light-catalyzed synthesis of indol-3-yl aryl ketones from aryldiazonium salts, CO and indoles at room temperature was developed. This process provides a useful method for the preparation of diverse indol-3-yl aryl ketones from readily accessible reactants under base-free, acid-free and transition-metalfree conditions.
  • 加载中
    1. [1]

      [1] (a) G.L. Regina, T. Sarkar, R. Bai, et al., New arylthioindoles and related bioisosteres at the sulfur bridging group. 4. Synthesis, tubulin polymerization, cell growth inhibition, and molecular modeling studies, J. Med. Chem. 52 (2009) 7512-7527;

    2. [2]

      (b) I. Nicolaou, V.J. Demopoulos, Substituted pyrrol-1-ylacetic acids that combine aldose reductase enzyme inhibitory activity and ability to prevent the nonenzymatic irreversiblemodification of proteins frommonosaccharides, J.Med. Chem. 46 (2003) 417-426;

    3. [3]

      (c) P.M. Fresneda, P. Molina, M.A. Saez, The first synthesis of the bis(indole) marine alkaloid caulersin, Synlett 1999 (1999) 1651-1653;

    4. [4]

      (d) L.J. Zhang, X. Xue, C.H. Xu, et al., Rhodium-catalyzed decarbonylative direct C2-arylation of indoles with aryl carboxylic acids, ChemCatChem6 (2014) 3069-3074;

    5. [5]

      (e) S. Kathiravan, I.A. Nicholls, Rhodium(Ⅲ)-catalysed aerobic synthesis of highly functionalized indoles from N-arylurea under mild conditions through C-H activation, Chem. Commun. 50 (2014) 14964-14967;

    6. [6]

      (f) M. Kim, N.K.Mishra, J. Park, et al., Decarboxylative acylation of indolineswithaketo acids under palladium catalysis: a facile strategy for the synthesis of 7-substituted indoles, Chem. Commun. 50 (2014) 14249-14252; For a few selected references, see:

    7. [7]

      [2] (a) J.E. Saxton, Recent progress in the chemistry of the monoterpenoid indole alkaloids, Nat. Prod. Rep. 14 (1997) 559-590;

    8. [8]

      (b) M. Toyota, M. Ihara, Recent progress in the chemistry of non-monoterpenoid indole alkaloids, Nat. Prod. Rep. 15 (1998) 327-340;

    9. [9]

      (c) M. Bandini, A. Eichholzer, Catalytic functionalization of indoles in a new dimension, Angew. Chem. Int. Ed. 48 (2009) 9608-9644;

    10. [10]

      (d) Q.Q. Yang, C. Xiao, L.Q. Lu, et al., Synthesis of indoles through highly efficient cascade reactions of sulfur ylides and N-(ortho-chloromethyl)aryl amides, Angew. Chem. Int. Ed. 51 (2012) 9137-9140;

    11. [11]

      (e) X. Zhang, Y.F. Li, H. Shi, et al., Rhodium(Ⅲ)-catalyzed intramolecular amidoarylationand hydroarylation of alkyne viaC-Hactivation:switchablesynthesis of 3,4-fused tricyclic indoles and chromans, Chem. Commun. 50 (2014) 7306-7309;

    12. [12]

      (f) M. Inman, C.J. Moody, Indole synthesis-something old, something new, Chem. Sci. 4 (2013) 29-41;

    13. [13]

      (g) G.R.Humphrey, J.T. Kuethe, Practical methodologies for the synthesis of indoles, Chem. Rev. 106 (2006) 2875-2911;

    14. [14]

      (h) L.J. Gu, C. Jin, H.T.Zhang, L.Z. Zhang,Copper-catalyzedaerobicoxidativecleavage ofC-Cbonds inepoxides leading to aryl ketones, J.Org.Chem.79(2014)8453-8456;

    15. [15]

      (i) R. Leurs, P.L.Chazot, F.C. Shenton, H.D. Lim, I.J.D. Esch,Molecular andbiochemical pharmacology of the histamine H4 receptor, Br. J. Pharmacol. 157 (2009) 14-23;

    16. [16]

      (j) P. Sang, Z.K. Chen, J.W. Zou, Y.H. Zhang, K2CO3 promoted direct sulfenylation of indoles: a facile approach towards 3-sulfenylindoles, Green Chem. 15 (2013) 2096-2100; For selected examples, see:

    17. [17]

      [3] (a) M.M. Faul, L.L. Winnerosk, Palladium-catalyzed acylation of a 1,2-disubstituted 3-indolylzinc chloride, Tetrahedron Lett. 38 (1997) 4749-4752;

    18. [18]

      (b) S.K. Guchhait, M. Kashyap, H. Kamble, ZrCl4-mediated regio-and chemoselective Friedel-Crafts acylation of indole, J. Org. Chem. 76 (2011) 4753-4758;

    19. [19]

      (c) H. Johansson, A. Urruticoechea, I. Larsen, D.S. Pedersen, A scalable method for regioselective 3-acylation of 2-substituted indoles under basic conditions, J. Org. Chem. 80 (2015) 471-478;

    20. [20]

      (d) N.N. Wan, Y.H. Hui, Z.F. Xie, J.D. Wang, Friedel-crafts alkylation of indoles with nitroalkenes catalyzed by Zn(Ⅱ)-thiourea complex, Chin. J. Chem. 30 (2012) 311-315;

    21. [21]

      (e) P. Zhang, T.B. Xiao, S.W. Xiong, X.C. Dong, L. Zhou, Synthesis of 3-acylindoles by visible-light induced intramolecular oxidative cyclization of o-alkynylated N,N-dialkylamines, Org. Lett. 14 (2014) 3264-3267;

    22. [22]

      (f) L. Yu, P.H. Li, L. Wang, Copper-promoted decarboxylative direct C3-acylation of N-substituted indoles with α-oxocarboxylic acids, Chem. Commun. 49 (2013) 2368-2370; For selected examples, see:

    23. [23]

      [4] (a) J.H. Wynne, C.T. Lloyd, S.D. Jensen, S. Boson, W.M. Stalick, 3-Acylindoles via a one-pot, regioselective Friedel-Crafts reaction, Synthesis 14 (2004) 2277-2282;

    24. [24]

      (b) K. Yeung, M.E. Farkas, Z.L. Qiu, Z. Yang, Friedel-crafts acylation of indoles in acidic imidazolium chloroaluminate ionic liquid at room temperature, Tetrahedron Lett. 43 (2002) 5793-5795;

    25. [25]

      (c) T. Okauchi, M. Itonaga, T. Minami, et al., General method for acylation of indoles at the 3-position with acyl chlorides in the presence of dialkylaluminum chloride, Org. Lett. 2 (2000) 1485-1487; For selected examples, see:

    26. [26]

      [5] W. Anthony, Novel synthesis of heterocyclic ketones, J. Org. Chem. 25 (1960) 2049-2053.

    27. [27]

      [6] J. Bergman, L. Venemalm, Intramolecular, ring closure of α,β-unsaturated 3-acylindoles, Tetrahedron Lett. 28 (1987) 3741-3744.

    28. [28]

      [7] (a) Y.H. Ma, J.S. You, F.J. Song, Facile access to 3-acylindoles through palladiumcatalyzed addition of indoles to nitriles: the one-pot synthesis of indenoindolones, Chem. Eur. J. 19 (2013) 1189-1193;

    29. [29]

      (b) M.N. Zhao, L.F. Ran, M. Chen, et al., Palladium-catalyzed carbonylation of indoles for synthesis of indol-3-yl aryl ketones, ACS Catal. 5 (2015) 1210-1213;

    30. [30]

      (c) W.L. Wu, W.P. Su, Mild and selective Ru-catalyzed formylation and Fe-catalyzed acylation of free (N-H) indoles using anilines as the carbonyl source, J. Am. Chem. Soc. 133 (2011) 11924-11927;

    31. [31]

      (d) L.J. Gu, J.Y. Liu, L.Z. Zhang, Y. Xiong, R. Wang, Synthesis of 3-acylindoles via decarboxylative cross-coupling reaction of free (N-H) indoles with α-oxocarboxylic acids, Chin. Chem. Lett. 25 (2014) 90-92; For selected examples, see:

    32. [32]

      [8] (a) J. Xuan, W.J. Xiao, Visible-light photoredox catalysis, Angew. Chem. Int. Ed. 51 (2012) 6828-6838;

    33. [33]

      (b) T.P. Yoon, M.A. Ischay, J. Du, Visible light photocatalysis as a greener approach to photochemical synthesis, Nat. Chem. 2 (2010) 527-532;

    34. [34]

      (c) C.K. Prier, D.A. Rankic, D.W.C. MacMillan, Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis, Chem. Rev. 113 (2013) 5322-5363;

    35. [35]

      (d) K. Zeitler, Photoredox catalysis with visible light, Angew. Chem. Int. Ed. 48 (2009) 9785-9789;

    36. [36]

      (e) L. Shi, W. Xia, Photoredox functionalization of C-H bonds adjacent to a nitrogen atom, Chem. Soc. Rev. 41 (2012) 7687-7697;

    37. [37]

      (f) J.W. Tucker, C.R.J. Stephenson, Shining light on photoredox catalysis: theory and synthetic applications, J. Org. Chem. 77 (2012) 1617-1622;

    38. [38]

      (g) D.M. Schultz, T.P. Yoon, Solar synthesis: prospects in visible light photocatalysis, Science 343 (2014) 1239176;

    39. [39]

      (h) M. Majek, F. Filace, A.J. Wangelin, On the mechanism of photocatalytic reactions with eosin Y, Beilstein J. Org. Chem. 10 (2014) 981-989; For selected reviews on visible-light photoredox catalysis, see:

    40. [40]

      [9] D.A. Nicewicz, D.W.C. MacMillan, Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes, Science 322 (2008) 77-80.

    41. [41]

      [10] (a) H.J. Jiang, Y.Z. Cheng, R.Z. Wang, Y. Zhang, S.Y. Yu, Synthesis of isoquinolines via visible light-promoted insertion of vinyl isocyanides with diaryliodonium salts, Chem. Commun. 50 (2014) 6164-6166;

    42. [42]

      (b) Y. Xu, W. Zhang, Ag/AgBr-grafted graphite-like carbon nitride with enhanced plasmonic photocatalytic activity under visible light, ChemCatChem 5 (2013) 2343-2351;

    43. [43]

      (c) G.B. Deng, Z.Q. Wang, J.D. Xia, et al., Tandem cyclizations of 1,6-enynes with arylsulfonyl chlorides by using visible-light photoredox catalysis, Angew. Chem. Int. Ed. 52 (2013) 1535-1538;

    44. [44]

      (d) J.D. Xia, G.B. Deng, M.B. Zhou, et al., Reusable visible light photoredox catalysts: catalyzed benzylic C(sp3)-H functionalization/carbocyclization reactions, Synlett 18 (2012) 2707-2713;

    45. [45]

      (e) E.L. Tyson, Z.L. Niemeyer, T.P. Yoon, Redox mediators in visible light photocatalysis: photocatalytic radical thiol-ene additions, J. Org. Chem. 79 (2014) 1427-1436;

    46. [46]

      (f) L.J. Gu, C. Jin, J.Y. Liu, H.Y. Ding, B.M. Fan, Transition-metal-free, visible-light induced cyclization of arylsulfonyl chlorides with 2-isocyanobiphenyls to produce phenanthridines, Chem. Commun. 50 (2014) 4643-4645;

    47. [47]

      (g) J. Xuan, X. Xia, T. Zeng, et al., Visible-light-induced formal [3 + 2] cycloaddition for pyrrole synthesis under metal-free conditions, Angew. Chem. Int. Ed. 53 (2014) 5653-5656;

    48. [48]

      (h) J. Liu, Q. Liu, H. Yi, et al., Visible-light-mediated decarboxylation/oxidative amidation of a-keto acids with amines under mild reaction conditions using O2, Angew. Chem. Int. Ed. 53 (2014) 502-506;

    49. [49]

      (i) D.P. Hari, B. König, Synthetic applications of eosin Y in photoredox catalysis, Chem. Commun. 50 (2014) 6688-6699;

    50. [50]

      (j) A.K.Yadav, V.P. Srivastava, L.D.S.Yadav, Visible-light-mediatedeosinYcatalyzed aerobic desulfurization of thioamides into amides, New J. Chem. 37 (2013) 4119-4124;

    51. [51]

      (k) T.B. Xiao, L.Y. Li, G.L. Lin, et al., Synthesis of 6-substituted phenanthridines by metal-free, visible-light induced aerobic oxidative cyclization of 2-isocyanobiphenyls with hydrazines, Green Chem. 16 (2014) 2418-2421;

    52. [52]

      (l) M.N.Hopkinson, B. Sahoo, J. Li, F. Glorius,Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis, Chem. Eur. J. 20 (2014) 3874-3886;

    53. [53]

      (m) C. Yu, N. Iqbal, S. Park, E.J. Cho, Selective difluoroalkylation of alkenes by using visible light photoredox catalysis, Chem. Commun. 50 (2014) 12884-12887;

    54. [54]

      (n) J.C. Tellis, D.N. Primer, G.A. Molander, Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis, Science 345 (2014) 433-436;

    55. [55]

      (o) Z. Zuo, D.T. Ahneman, L. Chu, et al., Merging photoredox with nickel catalysis: coupling of a-carboxyl sp3-carbonswith aryl halides, Science 345 (2014) 437-440; For recent selected examples for visible-light photoredox catalysts, see:

    56. [56]

      [11] (a) D.P. Hari, P. Schroll, B. König, Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts, J. Am. Chem. Soc. 134 (2012) 2958-2961;

    57. [57]

      (b) M. Majek, A.J. Wangelin, Metal-free carbonylations by photoredox catalysis, Angew. Chem. Int. Ed. 54 (2015) 2270-2274;

    58. [58]

      (c) W. Guo, L.Q. Lu, Y. Wang, et al., Metal-free, room-temperature, radical alkoxycarbonylation of aryldiazonium salts through visible-light photoredox catalysis,, Angew. Chem. Int. Ed. 54 (2015) 2265-2269;

    59. [59]

      (d) T. Hering, D.P. Hari, B. König, Visible-light-mediated a-arylation of enol acetates using aryl diazonium salts, J. Org. Chem. 77 (2012) 10347-10352;

    60. [60]

      (e) F.P. Crisóstomo, T. Martin, R. Carrillo, ascorbic acid as an initiator for the direct C-H arylation of (hetero)arenes with anilines nitrosated in situ, Angew. Chem. Int. Ed. 53 (2014) 2181-2185;

    61. [61]

      (f) L.J. Gu, C. Jin, J.Y. Yan, Metal-free, visible-light-mediated transformation of aryl diazonium salts and (hetero)arenes: an efficient route to aryl ketones, Green Chem. 17 (2015) 3733-3736.

    62. [62]

      [12] T. Kawamoto, T. Okada, D.P. Curran, I. Ryu, Efficient hydroxymethylation reactions of iodoarenes using CO and 1,3-dimethylimidazol-2-ylidene borane, Org. Lett. 15 (2013) 2144-2147.

    63. [63]

      [13] B. Sahoo, M.N. Hopkinson, F. Glorius, Combining gold and photoredox catalysis: visible light-mediated oxy-and aminoarylation of alkenes, J. Am. Chem. Soc. 135 (2013) 5505-5508.

    64. [64]

      [14] D.P. Hari, B. König, The photocatalyzed Meerwein arylation: classic reaction of aryl diazonium salts in a new light, Angew. Chem. Int. Ed. 52 (2013) 4734-4743.

  • 加载中
    1. [1]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    2. [2]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    3. [3]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    4. [4]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    5. [5]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    6. [6]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    7. [7]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    8. [8]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    9. [9]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    10. [10]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    11. [11]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    12. [12]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    13. [13]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    14. [14]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    15. [15]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    16. [16]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    17. [17]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    18. [18]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    19. [19]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    20. [20]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

Metrics
  • PDF Downloads(0)
  • Abstract views(695)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return