Citation: Zhi-Feng Wang, Zhao-Jie Cui. Supercritical fluid extraction and gas chromatography analysis of arsenic species from solid matrices[J]. Chinese Chemical Letters, ;2016, 27(02): 241-246. doi: 10.1016/j.cclet.2015.10.001 shu

Supercritical fluid extraction and gas chromatography analysis of arsenic species from solid matrices

  • Corresponding author: Zhao-Jie Cui, 
  • Received Date: 29 April 2015
    Available Online: 4 July 2015

    Fund Project:

  • A method in combination with derivatization-supercritical fluid extraction (SFE) and gas chromatography (GC) for the speciation and quantitative determination of dimethylarsinate (DMA), monomethylarsonate (MMA) and inorganic arsenic in solid matrices was investigated. Thioglycolic acid methyl ester (TGM) and thioglycolic acid ethyl ester (TGE) were evaluated as derivatization reagents. The effects of pressure, temperature, flow rate of supercritical CO2, extraction time, modifier and microemulsion on the efficiency of extraction were systematically investigated. The procedure was applied to the analysis of real soil and sediment samples. Results showed that TGE was more effective for arsenic speciation as a derivatization reagent. Modifying supercritical CO2 with methanol can greatly improve the extraction efficiency. Further, the addition of microemulsion containing surfactant Triton X-100 can further enhance recoveries of arsenic species. The optimum extraction conditions were 100℃, 30 MPa, 10 min static and 25 min dynamic extraction with 5% (v/v) methanol, and surfactant modified supercritical CO2. Detection limits in solid matriceswere 0.15, 0.3 and 1.2 mg/kg for DMA,MMAand inorganic arsenic, respectively. The method was validated by the recovery data. The resulting method was fast, easy to perform and selective in the extraction and detection of various arsenic species in solid matrices.
  • 加载中
    1. [1]

      [1] K. Park, J. Lee, J. Sung, Metal extraction from the artificially contaminated soil using supercritical CO2 with mixed ligands, Chemosphere 91 (2013) 616-622.

    2. [2]

      [2] D.L. Quach, B.J. Mincher, C.M. Wai, Supercritical fluid extraction and separation of uranium from other actinides, J. Hazard. Mater. 274 (2014) 360-366.

    3. [3]

      [3] J. Sunarso, S. Ismadji, Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: a review, J. Hazard. Mater. 161 (2009) 1-20.

    4. [4]

      [4] S.B. Hawthorne, Analytical-scale supercritical fluid extraction, Anal. Chem. 62 (1990) 633-642.

    5. [5]

      [5] K. Sujatha, K.C. Pitchaiah, N. Sivaraman, et al., Recovery of plutonium from polymeric waste matrices using supercritical fluid extraction, Desalin. Water Treat. 52 (2014) 470-475.

    6. [6]

      [6] C.M. Wai, S.F. Wang, Supercritical fluid extraction: metals as complexes, J. Chromatogr. A 785 (1997) 369-383.

    7. [7]

      [7] C.M. Wai, S.F. Wang, Separation of metal chelates and organometallic compounds by SFC and SFE/GC, J. Biochem. Biophys. Methods 43 (2000) 273-293.

    8. [8]

      [8] Y.H. Lin, N.G. Smart, C.M. Wai, Supercritical fluid extraction and chromatography of metal chelates and organometallic compounds, TrAC, Trends Anal. Chem. 14 (1995) 123-133.

    9. [9]

      [9] J.C. Liu, W. Wang, G.Z. Li, A new strategy for supercritical fluid extraction of copper ions, Talanta 53 (2001) 1149-1154.

    10. [10]

      [10] Y. Liu, V. Lopez-Avila, M. Alcaraz, W.F. Beckert, E.M. Heithmar, Determination of metals in solid samples by complexation-supercritical fluid extraction and gas chromatography-atomic emission detection, J. Chromatogr. Sci. 31 (1993) 310-316.

    11. [11]

      [11] Y.K. Chau, F. Yang, M. Brown, Supercritical fluid extraction of butyltin compounds from sediment, Anal. Chim. Acta 304 (1995) 85-89.

    12. [12]

      [12] V. Lopez-Avila, Y. Liu, W.F. Beckert, Interlaboratory evaluation of an off-line supercritical fluid extraction and gas chromatography with atomic emission detection method for the determination of organotin compounds in soil and sediments, J. Chromatogr. A 785 (1997) 279-288.

    13. [13]

      [13] P. Quevauviller, L. Ebdon, R.M. Harrison, Y. Wang, Certification of trimethyl-lead in an urban dust reference material (CRM 605), Appl. Organomet. Chem. 13 (1999) 1-7.

    14. [14]

      [14] H. Emteborg, E. Björklund, F. Ödman, et al., Determination of methylmercury in sediments using supercritical fluid extraction and gas chromatography coupled with microwave-induced plasma atomic emission spectrometry, Analyst 121 (1996) 19-29.

    15. [15]

      [15] J.M. Bayona, Supercritical fluid extraction in speciation studies, TrAC, Trends Anal. Chem. 19 (2000) 107-112.

    16. [16]

      [16] M. Ashraf-Khorassani, M.T. Combs, L.T. Taylor, Supercritical fluid extraction of metal ions and metal chelates from different environments, J. Chromatogr. A 774 (1997) 37-49.

    17. [17]

      [17] S. Kapaj, H. Peterson, K. Liber, P. Bhattacharya, Human health effects from chronic arsenic poisoning—a review, J. Environ. Sci. Health., A: Toxic Hazard. Subst. Environ. Eng. 41 (2006) 2399-2428.

    18. [18]

      [18] J.C. Ng, J.P. Wang, A. Shraim, A global health problem caused by arsenic from natural sources, Chemosphere 52 (2003) 1353-1359.

    19. [19]

      [19] K. Dix, C.J. Cappon, T.Y. Toribara, Arsenic speciation by capillary gas-liquid chromatography, J. Chromatogr. Sci. 25 (1987) 164-169.

    20. [20]

      [20] I. Ali, C.K. Jain, Advances in arsenic speciation techniques, Int. J. Environ. Anal. Chem. 84 (2004) 947-964.

    21. [21]

      [21] M.L. Chen, L.Y. Ma, X.W. Chen, New procedures for arsenic speciation: a review, Talanta 125 (2014) 78-86.

    22. [22]

      [22] B. Radke, L. Jewell, J. Namieśnik, Analysis of arsenic species in environmental samples, Crit. Rev. Anal. Chem. 42 (2012) 162-183.

    23. [23]

      [23] Y.G. Yin, J.F. Liu, G.B. Jiang, Recent advances in speciation analysis of mercury, arsenic and selenium, Chin. Sci. Bull. 58 (2013) 150-161.

    24. [24]

      [24] F.T. Henry, T.M. Thorpe, Gas chromatography of the trimethylsilyl derivatives of arsenic, arsenious, and dimethylarsinic acids, J. Chromatogr. A 166 (1978) 577-586.

    25. [25]

      [25] E.H. Daughtrey Jr., A.W. Fitchett, P. Mushak, Quantitative measurements of inorganic and methyl arsenicals by gas-liquid chromatography, Anal. Chim. Acta 79 (1975) 199-206.

    26. [26]

      [26] D.R. Killelea, J.H. Aldstadt Ⅲ, Solid-phase microextraction method for gas chromatography with mass spectrometric and pulsed flame photometric detection: studies of organoarsenical speciation, J. Chromatogr. A 918 (2001) 169-175.

    27. [27]

      [27] B. Beckermann, Determination of monomethylarsonic acid and dimethylarsinic acid by derivatization with thioglycolic acid methylester and gas-liquid chromatographic, Anal. Chim. Acta 135 (1982) 77-84.

    28. [28]

      [28] J. Richter, S. Lischka, C. Piechotta, Analysis of arsenic species in fish after derivatization by GC-MS, Talanta 101 (2012) 524-529.

    29. [29]

      [29] B.W. Wenclawiak, M. Krah, Reactive supercritical fluid extraction and chromatography of arsenic species, Fresenius J. Anal. Chem. 351 (1995) 134-138.

    30. [30]

      [30] K. Schoene, J. Steinhanses, H.J. Bruckert, A. König, Speciation of arsenic-containing chemical warfare agents by gas chromatographic analysis after derivatization with thioglycolic acid methyl ester, J. Chromatogr. A 605 (1992) 257-262.

    31. [31]

      [31] Z.J. Cui, G.Y. Zhang, W. Song, Y.T. Song, Supercritical fluid extraction of metal ions from a solid matrix with 8-hydroxyquinoline and carbon dioxide, J. Liq. Chromatogr. Related Technol. 27 (2004) 985-994.

    32. [32]

      [32] Y. Yamini, M. Asghari-Khiavi, N. Bahramifar, Effects of different parameters on supercritical fluid extraction of steroid drugs, from spiked matrices and tablets, Talanta 58 (2002) 1003-1010.

    33. [33]

      [33] J.J. Langenfeld, S.B. Hawthorne, D.J. Miller, J. Pawliszyn, Role of modifiers for analytical-scale supercritical fluid extraction of environmental samples, Anal. Chem. 66 (1994) 909-916.

    34. [34]

      [34] S.Y. Du, G.Y. Zhang, Z.J. Cui, Supercritical fluid extraction of hazardous metals from urban total suspended particles, J. Liq. Chromatogr. Related Technol. 28 (2005) 1487-1495.

    35. [35]

      [35] M.M. Jiménez-Carmona, M.D. Luque de Castro, Reverse micelle formation for acceleration of the supercritical fluid extraction of cholesterol from food samples, Anal. Chem. 70 (1998) 2100-2103.

    36. [36]

      [36] M.M. Jiménez-Carmona, M.D. Luque de Castro, Reverse-micelle formation: a strategy for enhancing CO2-supercritical fluid extraction of polar analytes, Anal. Chim. Acta 358 (1998) 1-4.

    37. [37]

      [37] F.A. Claussen, Arsenic speciation of aqueous environmental samples by derivatization with thioglycolic acid methylester and capillary gas-liquid chromatography-mass spectrometry, J. Chromatogr. Sci. 35 (1997) 568-572.

    38. [38]

      [38] Z. Mester, J. Pawliszyn, Speciation of dimethylarsinic acid and monomethylarsonic acid by solid-phase microextraction-gas chromatography-ion trap mass spectrometry, J. Chromatogr. A 873 (2000) 129-135.

    39. [39]

      [39] A.J. Bednar, J.R. Garbarino, J.F. Ranville, T.R. Wildeman, Presence of organoarsenicals used in cotton production in agricultural water and soil of the southern united states, J. Agric. Food Chem. 50 (2002) 7340-7344.

  • 加载中
    1. [1]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    2. [2]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    3. [3]

      Yating ZhengYulan HuangJing LuoXuqi PengXiran GuiGang LiuYang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169

    4. [4]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    5. [5]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Dan OuyangHuan HuangYanting HeJiajing ChenJiali LinZhuling ChenZongwei CaiZian Lin . Utilization of hydralazine as a reactive matrix for enhanced detection and on-MALDI-target derivatization of saccharides. Chinese Chemical Letters, 2024, 35(5): 108885-. doi: 10.1016/j.cclet.2023.108885

    8. [8]

      Yu-Qi CaoYing-Jie LuLi ZhangJing ZhangYin-Long Guo . Vacuum promoted on-tissue derivatization strategy: Unravelling spatial distribution of glycerides on tissue. Chinese Chemical Letters, 2024, 35(12): 109788-. doi: 10.1016/j.cclet.2024.109788

    9. [9]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    10. [10]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    11. [11]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    12. [12]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    13. [13]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    14. [14]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    15. [15]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    16. [16]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    17. [17]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    18. [18]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    19. [19]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    20. [20]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

Metrics
  • PDF Downloads(0)
  • Abstract views(646)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return