Citation:
Tang-Hao Liu, Ke Chen, Qin Hu, Jiang Wu, De-Ying Luo, Shuang Jia, Rui Zhu, Qi-Huang Gong. Fast-growing procedure for perovskite films in planar heterojunction perovskite solar cells[J]. Chinese Chemical Letters,
;2015, 26(12): 1518-1521.
doi:
10.1016/j.cclet.2015.09.022
-
A fast-growing procedure (FGP) to fabricate perovskite films with large grain sizes is described in this article. In the FGP method, the perovskite precursor solution is coated onto the substrates at a temperature of ~240 ℃. The solvent in the precursor solution evaporates quickly in about 2 s, resulting in the rapid formation of a perovskite film without further annealing process. Millimeter-scale perovskite grain clusters are obtained in the film. Based on such perovskite films, fabricated planar heterojunction perovskite solar cells give a power conversion efficiency (PCE) above 8%.
-
Keywords:
- Perovskite solar cell
-
-
-
[1]
[1] J. Shi, X. Xu, D. Li, et al., Interfaces in perovskite solar cells, Small 11 (2015) 2472-2486.
-
[2]
[2] L. Zheng, D. Zhang, Y. Ma, et al., Morphology control of the perovskite films for efficient solar cells, Dalton Trans. 44 (2015) 10582-10593.
-
[3]
[3] J.P. Wang, N.N. Wang, Y.Z. Jin, et al., Interfacial control toward efficient and lowvoltage perovskite light-emitting diodes, Adv. Mater. 27 (2015) 2311-2316.
-
[4]
[4] A. Kojima, K. Teshima, Y. Shirai, et al., Organometal halide perovskites as visiblelight sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051.
-
[5]
[5] J.H. Im, C.R. Lee, J.W. Lee, et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale 3 (2011) 4088-4093.
-
[6]
[6] H.S. Kim, C.R. Lee, J.H. Im, et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2 (2012) 591.
-
[7]
[7] S.D. Stranks, G.E. Eperon, G. Grancini, et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science 342 (2013) 341-344.
-
[8]
[8] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501 (2013) 395-398.
-
[9]
[9] J. Burschka, N. Pellet, S.-J. Moon, et al., Sequential deposition as a route to highperformance perovskite-sensitized solar cells, Nature 499 (2013) 316-319.
-
[10]
[10] A. Mei, X. Li, L. Liu, et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability, Science 345 (2014) 295-298.
-
[11]
[11] G. Xing, N. Mathews, S. Sun, et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science 342 (2013) 344-347.
-
[12]
[12] Q. Hu, J. Wu, C. Jiang, et al., Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%, ACS Nano 8 (2014) 10161-10167.
-
[13]
[13] H. Zhou, Q. Chen, G. Li, et al., Interface engineering of highly efficient perovskite solar cells, Science 345 (2014) 542-546.
-
[14]
[14] N.J. Jeon, J.H. Noh, W.S. Yang, et al., Compositional engineering of perovskite materials for high-performance solar cells, Nature 517 (2015) 476-480.
-
[15]
[15] W.S. Yang, J.H. Noh, N.J. Jeon, et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 348 (2015) 1234-1237.
-
[16]
[16] Q. Chen, H. Zhou, Z. Hong, et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc. 136 (2014) 622-625.
-
[17]
[17] O. Malinkiewicz, A. Yella, Y.H. Lee, et al., Perovskite solar cells employing organic charge-transport layers, Nat. Photonics 8 (2014) 128-132.
-
[18]
[18] T. Salim, S. Sun, Y. Abe, et al., Perovskite-based solar cells: Impact of morphology and device architecture on device performance, J. Mater. Chem. A 3 (2015) 8943-8969.
-
[19]
[19] M. Xiao, F. Huang, W. Huang, et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells, Angew. Chem. Int. Ed. 126 (2014) 10056-10061.
-
[20]
[20] W. Nie, H. Tsai, R. Asadpour, et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science 347 (2015) 522-525.
-
[21]
[21] P. Docampo, J.M. Ball, M. Darwich, et al., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nat. Commun. 4 (2013) 2761.
-
[22]
[22] Z. Xiao, Q. Dong, C. Bi, et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement, Adv. Mater. 26 (2014) 6503-6509.
-
[23]
[23] J.H. Im, I.H. Jang, N. Pellet, et al., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells, Nat. Nanotechnol. 9 (2014) 927-932.
-
[24]
[24] Q. Hu, Y. Liu, Y. Li, et al., Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer, J. Mater. Chem. A (2015) 18483-18491.
-
[25]
[25] Q. Chen, H. Zhou, T.-B. Song, et al., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells, Nano Lett. 14 (2014) 4158-4163.
-
[1]
-
-
-
[1]
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
-
[2]
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
-
[3]
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
-
[4]
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
-
[5]
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
-
[6]
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
-
[7]
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
-
[8]
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
-
[9]
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
-
[10]
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
-
[11]
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
-
[12]
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
-
[13]
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
-
[14]
Kun-Heng Li , Hong-Yang Zhao , Dan-Dan Wang , Ming-Hui Qi , Zi-Jian Xu , Jia-Mi Li , Zhi-Li Zhang , Shi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882
-
[15]
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
-
[16]
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
-
[17]
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
-
[18]
Yanjing Li , Jiayin Li , Yuqi Chang , Yunfeng Lin , Lei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414
-
[19]
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
-
[20]
Ying Gao , Rong Zhou , Qiwen Wang , Shaolong Qi , Yuanyuan Lv , Shuang Liu , Jie Shen , Guocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(582)
- HTML views(16)