Citation: Ying Long, Jia Zhou, Mei-Pan Yang, Bing-Qin Yang. A selective and sensitive off-on probe for palladium and its application for living cell imaging[J]. Chinese Chemical Letters, ;2016, 27(02): 205-210. doi: 10.1016/j.cclet.2015.09.003 shu

A selective and sensitive off-on probe for palladium and its application for living cell imaging

  • Corresponding author: Bing-Qin Yang, 
  • Received Date: 31 March 2015
    Available Online: 10 June 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21172178). (No. 21172178)

  • A new rhodamine B derivative T1 has been rationally synthesized and displayed selective Pd(Ⅱ)-amplified absorbance and fluorescence emission above 540 nm in methanol-water. Upon the addition of Pd(Ⅱ), the spirolactam ring was unfolded and a 1:1 metal-ligand complex formed, which can be used for "naked-eyes" detection. In addition, fluorescence imaging experiments of Pd2+ in HepG2 living cells showed its valuable application in biological systems.
  • 加载中
    1. [1]

      [1] A. Mokhir, A. Kiel, D.P. Herten, R. Kraemer, Fluorescent sensor for Cu2+ with a tunable emission wavelength, Inorg. Chem. 44 (2005) 5661-5666.

    2. [2]

      [2] X.H. Yang, S. Li, Z.S. Tang, et al., A simple, water-soluble, Fe3+-selective fluorescent probe and its application in bioimaging, Chin. Chem. Lett. 26 (2015) 129-132.

    3. [3]

      [3] P.J. Jiang, Z.J. Guo, Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors, Coord. Chem. Rev. 248 (2004) 205-229.

    4. [4]

      [4] F. Pina, M.A. Bernardo, E. García-España, Fluorescent chemosensors containing polyamine receptors, Eur. J. Inorg. Chem. 2000 (2000) 2143-2157.

    5. [5]

      [5] Z.X. Han, B.S. Zhu, T.L.Wu, et al., A fluorescent probe for Hg2+ sensing in solutions and living cells with a wide working pH range, Chin. Chem. Lett. 25 (2014) 73-76.

    6. [6]

      [6] R. Méallet-Renault, R. Pansu, S. Amigoni-Gerbier, C. Larpent, Metal-chelating nanoparticles as selective fluorescent sensor for Cu2+, Chem. Commun. 20 (2004) 2344-2345.

    7. [7]

      [7] T. Bura, R. Ziessel, Design, synthesis and redox properties of a fluorene platform linking two different Bodipy dyes, Tetrahedron Lett. 51 (2010) 2875-2879.

    8. [8]

      [8] L. Pu, Fluorescence of organic molecules in chiral recognition, Chem. Rev. 104 (2004) 1687-1716.

    9. [9]

      [9] G.W. Gokel, W.M. Leevy, M.E. Weber, Crown ethers: sensors for ions and molecular scaffolds for materials and biological models, Chem. Rev. 104 (2004) 2723-2750.

    10. [10]

      [10] W.Y. Wong, P.D. Harvey, Recent progress on the photonic properties of conjugated organometallic polymers built upon the trans-bis (para-ethynylbenzene) bis (phosphine) platinum(Ⅱ) chromophore and related derivatives, Macromol. Rapid Commun. 31 (2010) 671-713.

    11. [11]

      [11] L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, Luminescent chemosensors for transition metal ions, Coord. Chem. Rev. 205 (2000) 59-83.

    12. [12]

      [12] V. Amendola, L. Fabbrizzi, F. Foti, et al., Light-emitting molecular devices based on transition metals, Coord. Chem. Rev. 250 (2006) 273-299.

    13. [13]

      [13] J. Le Bars, U. Specht, J.S. Bradley, D.G. Blackmond, A catalytic probe of the surface of colloidal palladium particles using heck coupling reactions, Langmuir 15 (1999) 7621-7625.

    14. [14]

      [14] T. Iwasawa, M. Tokunaga, Y. Obora, Y. Tsuji, Homogeneous palladium catalyst suppressing Pd black formation in air oxidation of alcohols, J. Am. Chem. Soc. 126 (2004) 6554-6555.

    15. [15]

      [15] M. Lafrance, K. Fagnou, Palladium-catalyzed benzene arylation: incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst design, J. Am. Chem. Soc. 128 (2006) 16496-16497.

    16. [16]

      [16] G. Zeni, R.C. Larock, Synthesis of heterocycles via palladiump π-olefin and π-alkyne chemistry, Chem. Rev. 104 (2004) 2285-2310.

    17. [17]

      [17] C. Liu, S.K. Zhang, Y.X. Zhang, Z.L. Jin, Arylation of pyridine N-oxides via a ligandfree Suzuki reaction in water, Chin. Chem. Lett. 26 (2015) 55-57.

    18. [18]

      [18] L.F. Tietze, H. Ila, H.P. Bell, Enantioselective palladium-catalyzed transformations, Chem. Rev. 104 (2004) 3453-3516.

    19. [19]

      [19] K.C. Nicolaou, P.G. Bulger, D. Sarlah, Palladiumkatalysierte kreuzkupplungen in der totalsynthese, Angew. Chem. Int. Ed. 117 (2005) 4516-4563.

    20. [20]

      [20] E. Rajanarendar, G. Mohan, E.K. Rao, M. Srinivas, Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction of organoboronic acids with N-protected 4-iodophenyl alanine linked isoxazoles, Chin. Chem. Lett. 20 (2009) 1-4.

    21. [21]

      [21] X. Chen, K.M. Engle, D.H. Wang, J.Q. Yu, Palladium(Ⅱ)-katalysierte C-H-Aktivierung/C-C-Kreuzkupplung: Vielseitigkeit und Anwendbarkeit, Angew. Chem. Int. Ed. 121 (2009) 5196-5217.

    22. [22]

      [22] M. Amini, M. Bagherzadeh, S. Rostamnia, Efficient imidazolium salts for palladium-catalyzed Mizoroki-Heck and Suzuki-Miyaura cross-coupling reactions, Chin. Chem. Lett. 24 (2013) 433-436.

    23. [23]

      [23] V.F. Hodge, M.O. Stallard, Platinum and palladium in roadside dust, Environ. Sci. Technol. 20 (1986) 1058-1060.

    24. [24]

      [24] T.Z. Liu, S.D. Lee, R.S. Bhatnagar, Toxicity of palladium, Toxicol. Lett. 4 (1979) 469-473.

    25. [25]

      [25] J.C. Wataha, C.T. Hanks, Biological effects of palladium and risk of using palladium in dental casting alloys, J. Oral Rehabil. 23 (1996) 309-320.

    26. [26]

      [26] International Programme on Chemical Safety, Palladium: Environmental Health Criteria Series 226, World Health Organization, Geneva, 2002.

    27. [27]

      [27] K. Van Meel, A. Smekens, M. Behets, P. Kazandjian, R. Van Grieken, Determination of platinum, palladium, and rhodium in automotive catalysts using high-energy secondary target X-ray fluorescence spectrometry, Anal. Chem. 79 (2007) 6383-6389.

    28. [28]

      [28] M.A. Taher, Z. Daliri, H. Fazelirad, Simultaneous extraction and preconcentration of copper, silver and palladium with modified alumina and their determination by electrothermal atomic absorption spectrometry, Chin. Chem. Lett. 25 (2014) 649-654.

    29. [29]

      [29] A. Kumar, G.K. Rao, A.K. Singh, Organochalcogen ligands and their palladium(Ⅱ) complexes: synthesis to catalytic activity for Heck coupling, RSC Adv. 2 (2012) 12552-12574.

    30. [30]

      [30] D. Kalný, A.-M. Albrecht-Gary, J. Havel, Highly sensitive method for palladium(Ⅱ) determination as a porphyrinato complex by capillary zone electrophoresis, Anal. Chim. Acta 439 (2001) 101-105.

    31. [31]

      [31] R.J.T. Houk, K.J. Wallace, H.S. Hewage, E.V. Anslyn, A colorimetric chemodosimeter for Pd(Ⅱ): a method for detecting residual palladium in cross-coupling reactions, Tetrahedron Lett. 64 (2008) 8271-8278.

    32. [32]

      [32] E. Unterreitmaier, M. Schuster, Fluorometric detection of heavy metals with Nmethyl-N'-9-(methylanthracene)-N'-benzoylthiourea, Anal. Chim. Acta 309 (1995) 339-344.

    33. [33]

      [33] K. Kubo, Y. Miyazaki, K. Akutsu, T. Sakurai, Synthesis and emission behavior of double-armed tetrathiacrown carrying two naphthalenes, Heterocycles 51 (1999) 965-968.

    34. [34]

      [34] B.K. Pal, M.S. Rahman, A nonextractive quenchofluorimetric method for the determination of palladium(Ⅱ) at mg/L levels using bathophenanthroline, Mikrochim. Acta 131 (1999) 139-144.

    35. [35]

      [35] Y.J. Fang, H. Chen, Z.X. Gao, X.Y. Jin, Studies on the determination of palladium(Ⅱ) by flourescence quenching method with meso-tetra [4-(carboxymethylenoxy) phenyl] porphyrin, Indian J. Chem. Technol. 41A (2002) 521-524.

    36. [36]

      [36] A. Tamayo, L. Escriche, J. Casabó, B. Covelo, C. Lodeiro, Synthesis, complexation and spectrofluorometric studies of a new NS3 anthracene-containing macrocyclic ligand, Eur. J. Inorg. Chem. 2006 (2006) 2997-3004.

    37. [37]

      [37] J.R. Matthews, F. Goldoni, H. Kooijman, et al., Metal coordination and aggregation properties of chiral polythiophenes and polythienylethynylenes, Macromol. Rapid Commun. 28 (2007) 1809-1815.

    38. [38]

      [38] L.P. Duan, Y.F. Xu, X.H. Qian, Highly sensitive and selective Pd2+ sensor of naphthalimide derivative based on complexation with alkynes and thio-heterocyclew, Chem. Commun. 47 (2008) 6339-6341.

    39. [39]

      [39] T. Schwarze, H. Müller, C. Dosche, et al., Luminescence detection of open-shell transition-metal ions by photoinduced electron transfer controlled by internal charge transfer of a receptor, Angew. Chem. Int. Ed. 46 (2007) 1671-1674.

    40. [40]

      [40] R.P. Haugland, Handbook of Fluorescent Probes and Research Chemicals, sixth ed., Molecular Probes Inc, Eugene, OR, 1996.

    41. [41]

      [41] H.N. Kim, M.H. Lee, H.J. Kim, J.S. Kim, J. Yoon, A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions, J. Chem. Soc. Rev. 37 (2008) 1465-1472.

    42. [42]

      [42] M. Beija, C.A.M. Afonso, J.M.G. Martinho, Synthesis and applications of rhodamine derivatives as fluorescent probes, Chem. Soc. Rev. 38 (2009) 2410-2433.

    43. [43]

      [43] X.Q. Chen, T. Pradhan, F. Wang, J.S. Kim, J. Yoon, Fluorescent chemosensors based on spiroring-opening of Xanthenes and related derivatives, Chem. Rev. 112 (2012) 1910-1956.

    44. [44]

      [44] Y.M. Yang, Q. Zhao, W. Feng, F.Y. Li, Luminescent chemodosimeters for bioimaging, Chem. Rev. 113 (2013) 192-270.

    45. [45]

      [45] B. Valeur, I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev. 205 (2000) 3-40.

    46. [46]

      [46] L. Fabbrizzi, M. Licchelli, G. Rabaioli, A. Taglietti, The design of luminescent sensors for anions and ionisable analytes, Coord. Chem. Rev. 205 (2000) 85-108.

    47. [47]

      [47] C.W. Rogers, M.O. Wolf, Luminescent molecular sensors based on analyte coordination to transition-metal complexes, Coord. Chem. Rev. 233-234 (2002) 341-350.

    48. [48]

      [48] G.C.R. Ellis-Davies, Neurobiology with caged calcium, Chem. Rev. 108 (2008) 1603-1613.

    49. [49]

      [49] L.J. Tang, F.F. Li, M.H. Liu, R. Nandhakumar, Single sensor for two metal ions: colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+, Spectrochim. Acta, A: Mol. Biomol. Spectrosc. 78 (2011) 1168-1172.

    50. [50]

      [50] E.M. Nolan, S.J. Lippard, Tools and tactics for the optical detection of mercuric ion, Chem. Rev. 108 (2008) 3443-3480.

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    4. [4]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    5. [5]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    6. [6]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    7. [7]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    8. [8]

      Zhihui ZhangRu SunChong BianHongbo WangZhen ZhaoPanpan LvJianzhong LuHaixin ZhangHulie ZengYuanyuan ChenZhijuan Cao . A dual-protease-triggered chemiluminescent probe for precise tumor imaging. Chinese Chemical Letters, 2025, 36(2): 109784-. doi: 10.1016/j.cclet.2024.109784

    9. [9]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    10. [10]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    11. [11]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    12. [12]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    13. [13]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    14. [14]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    15. [15]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    16. [16]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    17. [17]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    18. [18]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    19. [19]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    20. [20]

      Miao-Miao ChenMin-Ling ZhangXiao SongJun JiangXiaoqian TangQi ZhangXiuhua ZhangPeiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785

Metrics
  • PDF Downloads(0)
  • Abstract views(661)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return