Citation: Zhi-Lin Cheng, Wei Sun. Preparation of nano-CuO-loaded halloysite nanotubes with high catalytic activity for selective oxidation of cyclohexene[J]. Chinese Chemical Letters, ;2016, 27(01): 81-84. doi: 10.1016/j.cclet.2015.08.002 shu

Preparation of nano-CuO-loaded halloysite nanotubes with high catalytic activity for selective oxidation of cyclohexene

  • Corresponding author: Zhi-Lin Cheng, 
  • Received Date: 10 June 2015
    Available Online: 10 June 2015

    Fund Project: This work was supported by the Talent Introduction Fund of Yangzhou University, Jiangsu Social Development Project(No. BE2014613) (No. BE2014613)Six Talent Peaks of Jiangsu Province(No. 2014-XCL-013). (No. 2014-XCL-013)

  • A facile preparation method of nano-CuO catalysts, assembled in the hollow nanotube of halloysite nanotubes(HNTs), was developed. The characterizations of XRD, TEM, SEM, BET, XRF and FT-IR were used to analyze the structure and properties of the nano-CuO/HNT loaded catalyst. The XRD patterns indicated that the CuO nanoparticles on HNTs were monoclinic phase. The TEM-EDX and SEM images confirmed that most of nano-CuO catalysts with the crystal size of ca. 20 nm were assembled into the hollow nanotube of HNTs. The catalytic performance of the nano-CuO/HNT catalysts was evaluated by using selective oxidation of cyclohexene. The reaction temperature and recycling times were investigated. The results reveal that the nano-CuO/HNT catalysts exhibit an excellent catalytic oxidation performance for selective oxidation of cyclohexene to 2-cyclohexene-1-one.
  • 加载中
    1. [1]

      [1] Y. Zhang, Y.L. Shao, H.S. Xu, W. Wang, Organocatalytic direct asymmetric vinylogous Michael reaction of an α,β-unsaturated γ-butyrolactam with enones, J. Org. Chem. 76(2011) 1472-1474.

    2. [2]

      [2] A. Nakhai, J. Bergman, Synthesis of hydrogenated indazole derivatives starting with α,β-unsaturated ketones and hydrazine derivatives, Tetrahedron 65(2009) 2298-2306.

    3. [3]

      [3] A.W. van Zijl, A.J. Minnaard, B.L. Feringa, Straightforward synthesis of α,β-unsaturated thioesters via ruthenium-catalyzed olefin cross-metathesis with thioacrylate, J. Org. Chem. 73(2008) 5651-5653.

    4. [4]

      [4] S.O. Lee, R. Raja, K.D.M. Harris, et al., Mechanistic insights into the conversion of cyclohexene to adipic acid by H2O2 in the presence of a TAPO-5 catalyst, Angew. Chem. Int. Ed. 42(2003) 1520-1523.

    5. [5]

      [5] K. Sato, M. Aoki, R. Noyori, A "green" route to adipic acid:direct oxidation of cyclohexenes with 30 percent hydrogen peroxide, Science 281(1998) 1646-1647.

    6. [6]

      [6] D.E. De Vos, S. de Wildeman, B.F. Sels, P.J. Grobet, P.A. Jacobs, Selective alkene oxidation with H2O2 and a heterogenized Mn catalyst:epoxidation and a new entry to vicinal cis-diols, Angew. Chem. Int. Ed. 38(1999) 980-983.

    7. [7]

      [7] W. Nam, R. Ho, J.S. Valentine, Iron-cyclam complexes as catalysts for the epoxidation of olefins by 30% aqueous hydrogen peroxide in acetonitrile and methanol, J. Am. Chem. Soc. 113(1991) 7052-7054.

    8. [8]

      [8] G. Cainelli, G. Cardillo, Chromium Oxidations in Organic Chemistry, SpringerVerlag, Berlin, 1984.

    9. [9]

      [9] S. Khare, S. Shrivastava, Epoxidation of cyclohexene catalyzed by transition-metal substituted α-titanium arsenate using tert-butyl hydroperoxide as an oxidant, J. Mol. Catal. A:Chem. 217(2004) 51-58.

    10. [10]

      [10] S.T. Castaman, S. Nakagaki, R.R. Ribeiro, K.J. Ciuffi, S.M. Drechsel, Homogeneous and heterogeneous olefin epoxidation catalyzed by a binuclear Mn(Ⅱ)Mn(ⅡI) complex, J. Mol. Catal. A:Chem. 300(2009) 89-97.

    11. [11]

      [11] S.S. Li, A.F. Zhang, M. Liu, X.W. Guo, Synthesis and catalytic properties of hierarchical TS-1 in the presence of cationic organosilane surfactant, Chin. Chem. Lett. 22(2011) 303-305.

    12. [12]

      [12] J.Y. Mao, X.B. Hu, H.R. Li, et al., Iron chloride supported on pyridine-modified mesoporous silica:an efficient and reusable catalyst for the allylic oxidation of olefins with molecular oxygen, Green Chem. 10(2008) 827-831.

    13. [13]

      [13] F.J. Song, C. Wang, J.M. Falkowski, L.Q. Ma, W.B. Lin, Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation:tuning catalytic activity by controlling framework catenation and varying open channel sizes, J. Am. Chem. Soc. 132(2010) 15390-15398.

    14. [14]

      [14] F.P. Silva, M.J. Jacinto, R. Landers, L.M. Rossi, Selective allylic oxidation of cyclohexene by a magnetically recoverable cobalt oxide catalyst, Catal. Lett. 141(2011) 432-437.

    15. [15]

      [15] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide, J. Catal. 289(2012) 259-265.

    16. [16]

      [16] D.M. Jiang, T. Mallat, D.M. Meier, A. Urakawa, A. Baiker, Copper metal-organic framework:structure and activity in the allylic oxidation of cyclohexene with molecular oxygen, J. Catal. 270(2010) 26-33.

    17. [17]

      [17] I.Y. Skobelev, A.B. Sorokin, K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, Solvent-free allylic oxidation of alkenes with O2 mediated by Fe-and Cr-MIL-101, J. Catal. 298(2013) 61-69.

    18. [18]

      [18] Y.H. Fu, D.R. Sun, M. Qin, R.K. Huang, Z.H. Li, Cu(Ⅱ)-and Co(Ⅱ)-containing metal-organic frameworks(MOFs) as catalysts for cyclohexene oxidation with oxygen under solvent-free conditions, RSC Adv. 2(2012) 3309-3314.

    19. [19]

      [19] S. El-Korso, I. Khaldi, S. Bedrane, et al., Liquid phase cyclohexene oxidation over vanadia based catalysts with tert-butyl hydroperoxide:epoxidation versus allylic oxidation, J. Mol. Catal. A:Chem. 394(2014) 89-96.

    20. [20]

      [20] B.G. Donoeva, D.S. Ovoshchnikov, V.B. Golovko, Establishing a Au nanoparticle size effect in the oxidation of cyclohexene using gradually changing Au catalysts, ACS Catal. 3(2013) 2986-2991.

    21. [21]

      [21] M.Y. Zhu, G.W. Diao, High catalytic activity of CuO nanorods for oxidation of cyclohexene to 2-cyclohexene-1-one, Catal. Sci. Technol. 2(2012) 82-84.

    22. [22]

      [22] M. Ghiaci, B. Aghabarari, A.M.B. Rego, A.M. Ferrariab, S. Habibollahic, Efficient allylic oxidation of cyclohexene catalyzed by trimetallic hybrid nano-mixed oxide(Ru/Co/Ce), Appl. Catal., A 393(2011) 225-230.

    23. [23]

      [23] Y.H. Cao, H. Yu, F. Peng, H.J. Wang, Selective allylic oxidation of cyclohexene catalyzed by nitrogen-doped carbon nanotubes, ACS Catal. 4(2014) 1617-1625.

    24. [24]

      [24] R. Zhai, B. Zhang, L. Liu, et al., Immobilization of enzyme biocatalyst on natural halloysite nanotubes, Catal. Commun. 12(2010) 259-263.

    25. [25]

      [25] J.H. Wang, X. Zhang, B. Zhang, et al., Rapid adsorption of Cr(VI) on modified halloysite nanotubes, Desalination 259(2010) 22-28.

    26. [26]

      [26] A. Viano, S.R. Mishra, R. Lloyd, J. Losby, T. Gheyi, Thermal effects on ESR signal evolution in nano and bulk CuO powder, J. Non-Cryst. Solids 325(2003) 16-21.

  • 加载中
    1. [1]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    2. [2]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    3. [3]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    5. [5]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    6. [6]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    7. [7]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    8. [8]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    9. [9]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    10. [10]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    11. [11]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    12. [12]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    13. [13]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    14. [14]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    15. [15]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    16. [16]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    17. [17]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    18. [18]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    19. [19]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    20. [20]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

Metrics
  • PDF Downloads(0)
  • Abstract views(638)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return