Citation: Zhi-Lin Cheng, Wei Sun. Preparation of nano-CuO-loaded halloysite nanotubes with high catalytic activity for selective oxidation of cyclohexene[J]. Chinese Chemical Letters, ;2016, 27(01): 81-84. doi: 10.1016/j.cclet.2015.08.002
-
A facile preparation method of nano-CuO catalysts, assembled in the hollow nanotube of halloysite nanotubes(HNTs), was developed. The characterizations of XRD, TEM, SEM, BET, XRF and FT-IR were used to analyze the structure and properties of the nano-CuO/HNT loaded catalyst. The XRD patterns indicated that the CuO nanoparticles on HNTs were monoclinic phase. The TEM-EDX and SEM images confirmed that most of nano-CuO catalysts with the crystal size of ca. 20 nm were assembled into the hollow nanotube of HNTs. The catalytic performance of the nano-CuO/HNT catalysts was evaluated by using selective oxidation of cyclohexene. The reaction temperature and recycling times were investigated. The results reveal that the nano-CuO/HNT catalysts exhibit an excellent catalytic oxidation performance for selective oxidation of cyclohexene to 2-cyclohexene-1-one.
-
Keywords:
- Cyclohexene,
- CuO,
- Selective oxidation,
- HNTs
-
-
[1]
[1] Y. Zhang, Y.L. Shao, H.S. Xu, W. Wang, Organocatalytic direct asymmetric vinylogous Michael reaction of an α,β-unsaturated γ-butyrolactam with enones, J. Org. Chem. 76(2011) 1472-1474.
-
[2]
[2] A. Nakhai, J. Bergman, Synthesis of hydrogenated indazole derivatives starting with α,β-unsaturated ketones and hydrazine derivatives, Tetrahedron 65(2009) 2298-2306.
-
[3]
[3] A.W. van Zijl, A.J. Minnaard, B.L. Feringa, Straightforward synthesis of α,β-unsaturated thioesters via ruthenium-catalyzed olefin cross-metathesis with thioacrylate, J. Org. Chem. 73(2008) 5651-5653.
-
[4]
[4] S.O. Lee, R. Raja, K.D.M. Harris, et al., Mechanistic insights into the conversion of cyclohexene to adipic acid by H2O2 in the presence of a TAPO-5 catalyst, Angew. Chem. Int. Ed. 42(2003) 1520-1523.
-
[5]
[5] K. Sato, M. Aoki, R. Noyori, A "green" route to adipic acid:direct oxidation of cyclohexenes with 30 percent hydrogen peroxide, Science 281(1998) 1646-1647.
-
[6]
[6] D.E. De Vos, S. de Wildeman, B.F. Sels, P.J. Grobet, P.A. Jacobs, Selective alkene oxidation with H2O2 and a heterogenized Mn catalyst:epoxidation and a new entry to vicinal cis-diols, Angew. Chem. Int. Ed. 38(1999) 980-983.
-
[7]
[7] W. Nam, R. Ho, J.S. Valentine, Iron-cyclam complexes as catalysts for the epoxidation of olefins by 30% aqueous hydrogen peroxide in acetonitrile and methanol, J. Am. Chem. Soc. 113(1991) 7052-7054.
-
[8]
[8] G. Cainelli, G. Cardillo, Chromium Oxidations in Organic Chemistry, SpringerVerlag, Berlin, 1984.
-
[9]
[9] S. Khare, S. Shrivastava, Epoxidation of cyclohexene catalyzed by transition-metal substituted α-titanium arsenate using tert-butyl hydroperoxide as an oxidant, J. Mol. Catal. A:Chem. 217(2004) 51-58.
-
[10]
[10] S.T. Castaman, S. Nakagaki, R.R. Ribeiro, K.J. Ciuffi, S.M. Drechsel, Homogeneous and heterogeneous olefin epoxidation catalyzed by a binuclear Mn(Ⅱ)Mn(ⅡI) complex, J. Mol. Catal. A:Chem. 300(2009) 89-97.
-
[11]
[11] S.S. Li, A.F. Zhang, M. Liu, X.W. Guo, Synthesis and catalytic properties of hierarchical TS-1 in the presence of cationic organosilane surfactant, Chin. Chem. Lett. 22(2011) 303-305.
-
[12]
[12] J.Y. Mao, X.B. Hu, H.R. Li, et al., Iron chloride supported on pyridine-modified mesoporous silica:an efficient and reusable catalyst for the allylic oxidation of olefins with molecular oxygen, Green Chem. 10(2008) 827-831.
-
[13]
[13] F.J. Song, C. Wang, J.M. Falkowski, L.Q. Ma, W.B. Lin, Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation:tuning catalytic activity by controlling framework catenation and varying open channel sizes, J. Am. Chem. Soc. 132(2010) 15390-15398.
-
[14]
[14] F.P. Silva, M.J. Jacinto, R. Landers, L.M. Rossi, Selective allylic oxidation of cyclohexene by a magnetically recoverable cobalt oxide catalyst, Catal. Lett. 141(2011) 432-437.
-
[15]
[15] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide, J. Catal. 289(2012) 259-265.
-
[16]
[16] D.M. Jiang, T. Mallat, D.M. Meier, A. Urakawa, A. Baiker, Copper metal-organic framework:structure and activity in the allylic oxidation of cyclohexene with molecular oxygen, J. Catal. 270(2010) 26-33.
-
[17]
[17] I.Y. Skobelev, A.B. Sorokin, K.A. Kovalenko, V.P. Fedin, O.A. Kholdeeva, Solvent-free allylic oxidation of alkenes with O2 mediated by Fe-and Cr-MIL-101, J. Catal. 298(2013) 61-69.
-
[18]
[18] Y.H. Fu, D.R. Sun, M. Qin, R.K. Huang, Z.H. Li, Cu(Ⅱ)-and Co(Ⅱ)-containing metal-organic frameworks(MOFs) as catalysts for cyclohexene oxidation with oxygen under solvent-free conditions, RSC Adv. 2(2012) 3309-3314.
-
[19]
[19] S. El-Korso, I. Khaldi, S. Bedrane, et al., Liquid phase cyclohexene oxidation over vanadia based catalysts with tert-butyl hydroperoxide:epoxidation versus allylic oxidation, J. Mol. Catal. A:Chem. 394(2014) 89-96.
-
[20]
[20] B.G. Donoeva, D.S. Ovoshchnikov, V.B. Golovko, Establishing a Au nanoparticle size effect in the oxidation of cyclohexene using gradually changing Au catalysts, ACS Catal. 3(2013) 2986-2991.
-
[21]
[21] M.Y. Zhu, G.W. Diao, High catalytic activity of CuO nanorods for oxidation of cyclohexene to 2-cyclohexene-1-one, Catal. Sci. Technol. 2(2012) 82-84.
-
[22]
[22] M. Ghiaci, B. Aghabarari, A.M.B. Rego, A.M. Ferrariab, S. Habibollahic, Efficient allylic oxidation of cyclohexene catalyzed by trimetallic hybrid nano-mixed oxide(Ru/Co/Ce), Appl. Catal., A 393(2011) 225-230.
-
[23]
[23] Y.H. Cao, H. Yu, F. Peng, H.J. Wang, Selective allylic oxidation of cyclohexene catalyzed by nitrogen-doped carbon nanotubes, ACS Catal. 4(2014) 1617-1625.
-
[24]
[24] R. Zhai, B. Zhang, L. Liu, et al., Immobilization of enzyme biocatalyst on natural halloysite nanotubes, Catal. Commun. 12(2010) 259-263.
-
[25]
[25] J.H. Wang, X. Zhang, B. Zhang, et al., Rapid adsorption of Cr(VI) on modified halloysite nanotubes, Desalination 259(2010) 22-28.
-
[26]
[26] A. Viano, S.R. Mishra, R. Lloyd, J. Losby, T. Gheyi, Thermal effects on ESR signal evolution in nano and bulk CuO powder, J. Non-Cryst. Solids 325(2003) 16-21.
-
[1]
-
-
[1]
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
-
[2]
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
-
[3]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[4]
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
-
[5]
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
-
[6]
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
-
[7]
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
-
[8]
Kezhen Qi , Shu-yuan Liu , Ruchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460
-
[9]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[10]
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
-
[11]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[12]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[13]
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
-
[14]
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
-
[15]
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
-
[16]
Huangjie Lu , Yingzhe Du , Peng Lin , Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344
-
[17]
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
-
[18]
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
-
[19]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[20]
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(638)
- HTML views(2)