Citation: Sakharam B. Dongare, Hemant V. Chavan, Pravin S. Bhale, Yoginath B. Mule, Amol S. Kotmale, Babasaheb P. Bandgar. A catalyst-and solvent-free multicomponent synthesis of 7-azagramine analogues via a Mannich type reaction[J]. Chinese Chemical Letters, ;2016, 27(01): 99-103. doi: 10.1016/j.cclet.2015.07.029 shu

A catalyst-and solvent-free multicomponent synthesis of 7-azagramine analogues via a Mannich type reaction

  • Corresponding author: Babasaheb P. Bandgar, 
  • Received Date: 26 April 2015
    Available Online: 9 July 2015

  • A catalyst-and solvent-free protocol for the synthesis of 7-azagramine analogues is described via a three-component Mannich type reaction between 7-azaindole, aromatic aldehydes and heterocyclic amines in acceptable to excellent yields. Structures of the compounds were confirmed satisfactorily by 1H NMR, IR, mass, TOCSY, HSQC and HMBC spectral analyses.
  • 加载中
    1. [1]

      [1] I.J. Pachter, D.E. Zacharias, O. Ribeiro, Indole alkaloids of Acer saccharinum(the silver maple), Dictyoloma incanescens, Piptadenia colubrina, and Mimosa hostilis, J. Org. Chem. 24(1959) 1285-1287.

    2. [2]

      [2] S. Iwata, S. Saito, K. Kon-ya, Y. Shizuri, Y. Ohizumi, Novel marine-derived halogencontaining gramine analogues induce vasorelaxation in isolated rat aorta, Eur. J. Pharmacol. 432(2001) 63-70.

    3. [3]

      [3] B.B. Semenov, V.G. Granik, Chemistry of N-(1H-indol-3-ylmethyl)-N,N-dimethylamine(gramine):a review, Pharm. Chem. J. 38(2004) 287-310.

    4. [4]

      [4](a) S. Mahboobi, H. Pongratz, H. Hufsky, et al., Synthetic 2-aroylindole derivatives as a new class of potent tubulin-inhibitory, antimitotic agents, J. Med. Chem. 44(2001) 4535-4553;(b) D.A. Horton, G.T. Bourne, M.L. Smythe, The combinatorial synthesis of bicyclic privileged structures or privileged substructures, Chem. Rev. 103(2003) 893-930;(c) F. Popowycz, S. Routier, B. Josepha, J.Y. Merour, Synthesis and reactivity of 7-azaindole(1H-pyrrolo[2,3-b]pyridine), Tetrahedron 63(2007) 1031-1064;(d) J.T. Merour, S. Routier, F. Suzenet, B. Joseph, Recent advances in the synthesis and properties of 4-,5-,6-or 7-azaindoles, Tetrahedron 69(2013) 4767-4834.

    5. [5]

      [5](a) S.R. Walker, E.J. Carter, B.C. Huffand, J.C. Morris, Variolins and related alkaloids, Chem. Rev. 109(2009) 3080-3098;(b) W. Zhihui, W. Xiao, Synthesis of azaindoles, Prog. Chem. 10(2012) 1974-1982.

    6. [6]

      [6] P. Bamborough, M.D. Barker, S.A. Campos, et al., Pyrrolo[2,3-b]pyridin-4-yl-benzenesulfonamide compounds as IKK2 inhibitors, WO2008034860A1(March-2008).

    7. [7]

      [7] A. Kodimuthali, S. Sugin Lal Jabaris, M. Pal, Recent advances on phosphodiesterase 4 inhibitors for the treatment of asthma and chronic obstructive pulmonary disease, J. Med. Chem. 51(2008) 5471-5489.

    8. [8]

      [8](a) M. Allegretti, R. Anacardio, M.C. Cesta, et al., A practical synthesis of 7-azaindolylcarboxy-endo-tropanamide(DF 1012), Org. Process Res. Dev. 7(2003) 209-213;(b) M. Xia, C. Hou, D. DeMong, et al., Synthesis and structure-activity relationship of 7-azaindole piperidine derivatives as CCR2 antagonists, Bioorg. Med. Chem. Lett. 18(2008) 6468-6470.

    9. [9]

      [9](a) A.R. Blaazer, J.H.M. Lange, M.A.W. van der Neut, et al., Novel indole and azaindole(pyrrolopyridine) cannabinoid(CB) receptor agonists:design, synthesis, structure-activity relationships, physicochemical properties and biological activity, Eur. J. Med. Chem. 46(2011) 5086-5098;(b) J.J. Song, J.T. Reeves, F. Gallou, et al., Organometallic methods for the synthesis and functionalization of azaindoles, Chem. Soc. Rev. 36(2007) 1120-1132.

    10. [10]

      [10] S.J. Oh, K.C. Lee, S.Y. Lee, et al., Synthesis and evaluation of fluorine-substituted 1H-pyrrolo[2,3-b]pyridine derivatives for dopamine D4 receptor imaging, Bioorg. Med. Chem. 12(2004) 5505-5513.

    11. [11]

      [11] Z. Zhang, Z. Yang, H. Wong, et al., An effective procedure for the acylation of azaindoles at C-3, J. Org. Chem. 67(2002) 6226-6227.

    12. [12]

      [12](a) M. Shiri, Indoles in multicomponent processes(MCPs), Chem. Rev. 112(2012) 3508-3549;(b) D.K. Yadav, R. Patel, V.P. Srivastava, G. Watel, L.D.S. Yadav, Bromodimethylsulfonium bromide(BDMS)-catalyzed multicomponent synthesis of 3-aminoalkylated indoles, Tetrahedron Lett. 51(2010) 5701-5703;(c) P. Srihari, V.K. Sing, D.C. Bhunia, J.S. Yadav, Bromodimethylsulfonium bromide(BDMS)-catalyzed multicomponent synthesis of 3-aminoalkylated indoles, Tetrahedron Lett. 50(2009) 3763-3766;(d) B. Das, J.N. Kumar, A.S. Kumar, K. Damodar, Facile synthesis of 3-[(n-alkylanilino)(aryl)methyl]indoles using TCT, Synthesis 914(2010) 914-916;(e) V.K. Rao, B.S. Chhikara, A.N. Shirazi, et al., 3-Substitued indoles:one-pot synthesis and evaluation of anticancer and Src kinase inhibitory activities, Bioorg. Med. Chem. Lett. 21(2011) 3511-3514;(f) V.K. Rao, M.S. Rao, N. Jain, J. Panwar, A. Kumar, Silver triflate catalyzed synthesis of 3-aminoalkylated indoles and evaluation of their antibacterial activities, Org. Med. Chem. Lett. 1(2011) 10;(g) D. Kundu, A.K. Bagdi, A. Majee, A. Hajra, Zwitterionic-type molten salt:a mild and efficient organocatalyst for the synthesis of 3-aminoalkylated indoles via three-component coupling reaction, Synlett 8(2011) 1165-1167;(h) A. Kumar, M.K. Gupta, L-Proline catalysed multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction under solvent-free conditions, Green Chem. 14(2012) 290;(i) S.V. Goswami, P.B. Thorat, V.N. Kadam, S.A. Khiste, S.R. Bhusare, A convenient one-pot three component synthesis of 3-aminoalkylated indoles catalyzed by 3-chlorophenylboronic acid, Chin. Chem. Lett. 24(2013) 422-424;(j) X.F. Xu, Y. Xiong, X.G. Ling, et al., A practical synthesis of bis(indolyl)-methanes catalyzed by BF3·Et2O, Chin. Chem. Lett. 25(2014) 406-410;(k) K.P. Boroujeni, K. Parvanak, Efficient and solvent-free synthesis of bisindolylmethanes using silica gel supported aluminium chloride as a reusable catalyst, Chin. Chem. Lett. 22(2011) 939-942.

    13. [13]

      [13](a) A. Dömling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106(2006) 17-89;(b) S. Brauch, S.S. van Berkel, B. Westermann, Higher-order multicomponent reactions:beyond four reactants, Chem. Soc. Rev. 42(2013) 4948-4962;(c) M.S. Singh, S. Chowdhary, Recent developments in solvent-free multicomponent reactions:a perfect synergy for eco-compatible organic synthesis, RSC Adv. 2(2012) 4547-4592.

    14. [14]

      [14] B.L. Nilsson, L.E. Overman, Concise synthesis of guanidine-containing heterocycles using the Biginelli reaction, J. Org. Chem. 71(2006) 7706-7714.

    15. [15]

      [15](a) L.W. Xu, C.G. Xia, L. Li, Transition metal salt-catalyzed direct three-component Mannich reactions of aldehydes, ketones, and carbamates:efficient synthesis of N-protected beta-aryl-beta-amino ketone compounds, J. Org. Chem. 69(2004) 8482-8484;(b) L. Banfi, R. Riva, The Passerini reaction, Org. React. 65(2005) 1-140.

    16. [16]

      [16](a) R.A. De Silva, S. Santra, P.R. Andreana, A tandem one-pot, microwave-assisted synthesis of regiochemically differentiated 1,2,4,5-tetrahydro-1,4-benzodiazepin-3-ones, Org. Lett. 10(2008) 4541-4544;(b) A. Saini, S. Kumar, J.S. Sandhu, Hantzsch reaction:recent advances in Hantzsch 1,4-dihydropyridines, J. Sci. Ind. Res. 67(2008) 95-111;(c) S.G. Subramaniapillai, Mannich reaction:a versatile and convenient approach to bioactive skeletons, J. Chem. Sci. 125(2013) 467-482;(d) X.H. Cai, B. Xie, Recent advances on organocatalysed asymmetric Mannich reactions, ARKIVOC(2013) 264-293.

    17. [17]

      [17] R.A. Sheldon, Selective catalytic synthesis of fine chemicals:opportunities and trends, J. Mol. Catal. A:Chem. 107(1996) 75-83.

    18. [18]

      [18](a) H.V. Chavan, S.B. Babar, R.U. Hoval, B.P. Bandgar, Rapid one-pot, four component synthesis of pyranopyrazoles using heteropolyacid under solvent-free condition, Bull. Korean Chem. Soc. 32(2011) 3963;(b) H.V. Chavan, L.K. Adsul, B.P. Bandgar, Polyethylene glycol in water:a simple, efficient and green protocol for the synthesis of quinoxalines, J. Chem. Sci. 123(2011) 477;(c) H.V. Chavan, B.P. Bandgar, Aqueous extract of acacia concinna pods:an efficient surfactant type catalyst for synthesis of 3-carboxycoumarins and cinnamic acids via Knoevenagel condensation, ACS Sustain. Chem. Eng. 1(2013) 929-936;(d) S.S. Jalde, H.V. Chavan, L.K. Adsul, V.D. Dhakane, B.P. Bandgar, An efficient solvent-free synthesis of naphthopyranopyrimidines using heteropolyacid as an ecofriendly catalyst, Synth. React. Inorg. Met. Org. Chem. 44(2014) 623-626;(e) B.P. Bandgar, B.L. Korbad, S.A. Patil, et al., Uncatalyzed Knoevenagel condensation in PEG-600 at room temperature, Aust. J. Chem. 61(2008) 700-703;(f) V.D. Dhakane, S.S. Gholap, U.P. Deshmukh, H.V. Chavan, B.P. Bandgar, An efficient and green method for the synthesis of[1,3] oxazine derivatives catalyzed by thiamine hydrochloride(VB1) in water, C. R. Chim. 17(2014) 431-436;(g) H.V. Chavan, D.K. Narale, Synthesis of 2,4,5-triaryl and 1,2,4,5-tetraaryl imidazoles using silica chloride as an efficient and recyclable catalyst under solvent-free conditions, C. R. Chim. 17(2014) 980-984.

    19. [19]

      [19] J. Liddle, P. Bamborough, M.D. Barker, et al., 4-Phenyl-7-azaindoles as potent, selective and bioavailable IKK2 inhibitors demonstrating good in vivo efficacy, Bioorg. Med. Chem. Lett. 22(2012) 5222-5226.

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    3. [3]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    4. [4]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    5. [5]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    6. [6]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    7. [7]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    8. [8]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    9. [9]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    10. [10]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    11. [11]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    12. [12]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    13. [13]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    14. [14]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    15. [15]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    16. [16]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    17. [17]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    18. [18]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    19. [19]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    20. [20]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

Metrics
  • PDF Downloads(0)
  • Abstract views(708)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return