Citation: Sakharam B. Dongare, Hemant V. Chavan, Pravin S. Bhale, Yoginath B. Mule, Amol S. Kotmale, Babasaheb P. Bandgar. A catalyst-and solvent-free multicomponent synthesis of 7-azagramine analogues via a Mannich type reaction[J]. Chinese Chemical Letters, ;2016, 27(01): 99-103. doi: 10.1016/j.cclet.2015.07.029
-
A catalyst-and solvent-free protocol for the synthesis of 7-azagramine analogues is described via a three-component Mannich type reaction between 7-azaindole, aromatic aldehydes and heterocyclic amines in acceptable to excellent yields. Structures of the compounds were confirmed satisfactorily by 1H NMR, IR, mass, TOCSY, HSQC and HMBC spectral analyses.
-
Keywords:
- Bioisosters,
- 7-Azaindole,
- Mannich reaction,
- Multicomponent reaction
-
-
[1]
[1] I.J. Pachter, D.E. Zacharias, O. Ribeiro, Indole alkaloids of Acer saccharinum(the silver maple), Dictyoloma incanescens, Piptadenia colubrina, and Mimosa hostilis, J. Org. Chem. 24(1959) 1285-1287.
-
[2]
[2] S. Iwata, S. Saito, K. Kon-ya, Y. Shizuri, Y. Ohizumi, Novel marine-derived halogencontaining gramine analogues induce vasorelaxation in isolated rat aorta, Eur. J. Pharmacol. 432(2001) 63-70.
-
[3]
[3] B.B. Semenov, V.G. Granik, Chemistry of N-(1H-indol-3-ylmethyl)-N,N-dimethylamine(gramine):a review, Pharm. Chem. J. 38(2004) 287-310.
-
[4]
[4](a) S. Mahboobi, H. Pongratz, H. Hufsky, et al., Synthetic 2-aroylindole derivatives as a new class of potent tubulin-inhibitory, antimitotic agents, J. Med. Chem. 44(2001) 4535-4553;(b) D.A. Horton, G.T. Bourne, M.L. Smythe, The combinatorial synthesis of bicyclic privileged structures or privileged substructures, Chem. Rev. 103(2003) 893-930;(c) F. Popowycz, S. Routier, B. Josepha, J.Y. Merour, Synthesis and reactivity of 7-azaindole(1H-pyrrolo[2,3-b]pyridine), Tetrahedron 63(2007) 1031-1064;(d) J.T. Merour, S. Routier, F. Suzenet, B. Joseph, Recent advances in the synthesis and properties of 4-,5-,6-or 7-azaindoles, Tetrahedron 69(2013) 4767-4834.
-
[5]
[5](a) S.R. Walker, E.J. Carter, B.C. Huffand, J.C. Morris, Variolins and related alkaloids, Chem. Rev. 109(2009) 3080-3098;(b) W. Zhihui, W. Xiao, Synthesis of azaindoles, Prog. Chem. 10(2012) 1974-1982.
-
[6]
[6] P. Bamborough, M.D. Barker, S.A. Campos, et al., Pyrrolo[2,3-b]pyridin-4-yl-benzenesulfonamide compounds as IKK2 inhibitors, WO2008034860A1(March-2008).
-
[7]
[7] A. Kodimuthali, S. Sugin Lal Jabaris, M. Pal, Recent advances on phosphodiesterase 4 inhibitors for the treatment of asthma and chronic obstructive pulmonary disease, J. Med. Chem. 51(2008) 5471-5489.
-
[8]
[8](a) M. Allegretti, R. Anacardio, M.C. Cesta, et al., A practical synthesis of 7-azaindolylcarboxy-endo-tropanamide(DF 1012), Org. Process Res. Dev. 7(2003) 209-213;(b) M. Xia, C. Hou, D. DeMong, et al., Synthesis and structure-activity relationship of 7-azaindole piperidine derivatives as CCR2 antagonists, Bioorg. Med. Chem. Lett. 18(2008) 6468-6470.
-
[9]
[9](a) A.R. Blaazer, J.H.M. Lange, M.A.W. van der Neut, et al., Novel indole and azaindole(pyrrolopyridine) cannabinoid(CB) receptor agonists:design, synthesis, structure-activity relationships, physicochemical properties and biological activity, Eur. J. Med. Chem. 46(2011) 5086-5098;(b) J.J. Song, J.T. Reeves, F. Gallou, et al., Organometallic methods for the synthesis and functionalization of azaindoles, Chem. Soc. Rev. 36(2007) 1120-1132.
-
[10]
[10] S.J. Oh, K.C. Lee, S.Y. Lee, et al., Synthesis and evaluation of fluorine-substituted 1H-pyrrolo[2,3-b]pyridine derivatives for dopamine D4 receptor imaging, Bioorg. Med. Chem. 12(2004) 5505-5513.
-
[11]
[11] Z. Zhang, Z. Yang, H. Wong, et al., An effective procedure for the acylation of azaindoles at C-3, J. Org. Chem. 67(2002) 6226-6227.
-
[12]
[12](a) M. Shiri, Indoles in multicomponent processes(MCPs), Chem. Rev. 112(2012) 3508-3549;(b) D.K. Yadav, R. Patel, V.P. Srivastava, G. Watel, L.D.S. Yadav, Bromodimethylsulfonium bromide(BDMS)-catalyzed multicomponent synthesis of 3-aminoalkylated indoles, Tetrahedron Lett. 51(2010) 5701-5703;(c) P. Srihari, V.K. Sing, D.C. Bhunia, J.S. Yadav, Bromodimethylsulfonium bromide(BDMS)-catalyzed multicomponent synthesis of 3-aminoalkylated indoles, Tetrahedron Lett. 50(2009) 3763-3766;(d) B. Das, J.N. Kumar, A.S. Kumar, K. Damodar, Facile synthesis of 3-[(n-alkylanilino)(aryl)methyl]indoles using TCT, Synthesis 914(2010) 914-916;(e) V.K. Rao, B.S. Chhikara, A.N. Shirazi, et al., 3-Substitued indoles:one-pot synthesis and evaluation of anticancer and Src kinase inhibitory activities, Bioorg. Med. Chem. Lett. 21(2011) 3511-3514;(f) V.K. Rao, M.S. Rao, N. Jain, J. Panwar, A. Kumar, Silver triflate catalyzed synthesis of 3-aminoalkylated indoles and evaluation of their antibacterial activities, Org. Med. Chem. Lett. 1(2011) 10;(g) D. Kundu, A.K. Bagdi, A. Majee, A. Hajra, Zwitterionic-type molten salt:a mild and efficient organocatalyst for the synthesis of 3-aminoalkylated indoles via three-component coupling reaction, Synlett 8(2011) 1165-1167;(h) A. Kumar, M.K. Gupta, L-Proline catalysed multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction under solvent-free conditions, Green Chem. 14(2012) 290;(i) S.V. Goswami, P.B. Thorat, V.N. Kadam, S.A. Khiste, S.R. Bhusare, A convenient one-pot three component synthesis of 3-aminoalkylated indoles catalyzed by 3-chlorophenylboronic acid, Chin. Chem. Lett. 24(2013) 422-424;(j) X.F. Xu, Y. Xiong, X.G. Ling, et al., A practical synthesis of bis(indolyl)-methanes catalyzed by BF3·Et2O, Chin. Chem. Lett. 25(2014) 406-410;(k) K.P. Boroujeni, K. Parvanak, Efficient and solvent-free synthesis of bisindolylmethanes using silica gel supported aluminium chloride as a reusable catalyst, Chin. Chem. Lett. 22(2011) 939-942.
-
[13]
[13](a) A. Dömling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106(2006) 17-89;(b) S. Brauch, S.S. van Berkel, B. Westermann, Higher-order multicomponent reactions:beyond four reactants, Chem. Soc. Rev. 42(2013) 4948-4962;(c) M.S. Singh, S. Chowdhary, Recent developments in solvent-free multicomponent reactions:a perfect synergy for eco-compatible organic synthesis, RSC Adv. 2(2012) 4547-4592.
-
[14]
[14] B.L. Nilsson, L.E. Overman, Concise synthesis of guanidine-containing heterocycles using the Biginelli reaction, J. Org. Chem. 71(2006) 7706-7714.
-
[15]
[15](a) L.W. Xu, C.G. Xia, L. Li, Transition metal salt-catalyzed direct three-component Mannich reactions of aldehydes, ketones, and carbamates:efficient synthesis of N-protected beta-aryl-beta-amino ketone compounds, J. Org. Chem. 69(2004) 8482-8484;(b) L. Banfi, R. Riva, The Passerini reaction, Org. React. 65(2005) 1-140.
-
[16]
[16](a) R.A. De Silva, S. Santra, P.R. Andreana, A tandem one-pot, microwave-assisted synthesis of regiochemically differentiated 1,2,4,5-tetrahydro-1,4-benzodiazepin-3-ones, Org. Lett. 10(2008) 4541-4544;(b) A. Saini, S. Kumar, J.S. Sandhu, Hantzsch reaction:recent advances in Hantzsch 1,4-dihydropyridines, J. Sci. Ind. Res. 67(2008) 95-111;(c) S.G. Subramaniapillai, Mannich reaction:a versatile and convenient approach to bioactive skeletons, J. Chem. Sci. 125(2013) 467-482;(d) X.H. Cai, B. Xie, Recent advances on organocatalysed asymmetric Mannich reactions, ARKIVOC(2013) 264-293.
-
[17]
[17] R.A. Sheldon, Selective catalytic synthesis of fine chemicals:opportunities and trends, J. Mol. Catal. A:Chem. 107(1996) 75-83.
-
[18]
[18](a) H.V. Chavan, S.B. Babar, R.U. Hoval, B.P. Bandgar, Rapid one-pot, four component synthesis of pyranopyrazoles using heteropolyacid under solvent-free condition, Bull. Korean Chem. Soc. 32(2011) 3963;(b) H.V. Chavan, L.K. Adsul, B.P. Bandgar, Polyethylene glycol in water:a simple, efficient and green protocol for the synthesis of quinoxalines, J. Chem. Sci. 123(2011) 477;(c) H.V. Chavan, B.P. Bandgar, Aqueous extract of acacia concinna pods:an efficient surfactant type catalyst for synthesis of 3-carboxycoumarins and cinnamic acids via Knoevenagel condensation, ACS Sustain. Chem. Eng. 1(2013) 929-936;(d) S.S. Jalde, H.V. Chavan, L.K. Adsul, V.D. Dhakane, B.P. Bandgar, An efficient solvent-free synthesis of naphthopyranopyrimidines using heteropolyacid as an ecofriendly catalyst, Synth. React. Inorg. Met. Org. Chem. 44(2014) 623-626;(e) B.P. Bandgar, B.L. Korbad, S.A. Patil, et al., Uncatalyzed Knoevenagel condensation in PEG-600 at room temperature, Aust. J. Chem. 61(2008) 700-703;(f) V.D. Dhakane, S.S. Gholap, U.P. Deshmukh, H.V. Chavan, B.P. Bandgar, An efficient and green method for the synthesis of[1,3] oxazine derivatives catalyzed by thiamine hydrochloride(VB1) in water, C. R. Chim. 17(2014) 431-436;(g) H.V. Chavan, D.K. Narale, Synthesis of 2,4,5-triaryl and 1,2,4,5-tetraaryl imidazoles using silica chloride as an efficient and recyclable catalyst under solvent-free conditions, C. R. Chim. 17(2014) 980-984.
-
[19]
[19] J. Liddle, P. Bamborough, M.D. Barker, et al., 4-Phenyl-7-azaindoles as potent, selective and bioavailable IKK2 inhibitors demonstrating good in vivo efficacy, Bioorg. Med. Chem. Lett. 22(2012) 5222-5226.
-
[1]
-
-
[1]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[2]
Rong-Nan Yi , Wei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115
-
[3]
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
-
[4]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[5]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[6]
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
-
[7]
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
-
[8]
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
-
[9]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[10]
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
-
[11]
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
-
[12]
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
-
[13]
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
-
[14]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[15]
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
-
[16]
Wei-Tao Dou , Qing-Wen Zeng , Yan Kang , Haidong Jia , Yulian Niu , Jinglong Wang , Lin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995
-
[17]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[18]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[19]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[20]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(708)
- HTML views(2)