Citation: Lan Wen, Zhong Zheng, Wei Luo, Ping Cai, Gong-Zhen Cheng. Ruthenium deposited on MCM-41 as efficient catalyst for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J]. Chinese Chemical Letters, ;2015, 26(11): 1345-1350. doi: 10.1016/j.cclet.2015.06.019 shu

Ruthenium deposited on MCM-41 as efficient catalyst for hydrolytic dehydrogenation of ammonia borane and methylamine borane

  • Corresponding author: Wei Luo,  Ping Cai, 
  • Received Date: 29 May 2015
    Available Online: 17 June 2015

  • Ultrafine Ru nanoparticles are successfully deposited on MCM-41 by using a simple liquid impregnationreduction method, and further investigated for catalytic hydrolysis of ammonia borane and methylamine borane. Among all the catalysts tested, 1.12 wt% Ru/MCM-41 exhibits the highest catalytic activity, with turnover frequency value of 288 min-1.
  • 加载中
    1. [1]

      [1] Y.X. Wang, T.H. Chen, A high dispersed Pt0.35Pd0.35Co0.30/C as superior catalyst for methanol and formic acid electro-oxidation, Chin. Chem. Lett. 25 (2014) 907-911.

    2. [2]

      [2] W.H. Yuan, L.L. Mao, L. Li, Novel SrCe0.75Zr0.20Tm0.05O3 d membrane for hydrogen separation, Chin. Chem. Lett. 21 (2010) 369-372.

    3. [3]

      [3] F.H. Stephens, V. Pons, R.T. Baker, Ammonia-borane: the hydrogen source par excellence? Dalton Trans. 25 (2007) 2613-2626.

    4. [4]

      [4] Y.W. Yang, Z.H. Lu, Y.J. Hu, et al., Facile in situ synthesis of copper nanoparticles supported on reduced graphene oxide for hydrolytic dehydrogenation of ammonia borane, RSC Adv. 4 (2014) 13749-13752.

    5. [5]

      [5] Z.X. Yang, F.Y. Cheng, Z.L. Tao, J. Liang, J. Chen, Decreasing the thermal dehydrogenation temperature of methylamine borane (MeAB) by mixing with poly(- methyl acrylate) (PMA), Int. J. Hydrogen Energy 37 (2012) 7638-7644.

    6. [6]

      [6] A. Staubitz, M.E. Sloan, A.P. Robertson, et al., Catalytic dehydrocoupling/dehydrogenation of N-methylamine-borane and ammonia-borane: synthesis and characterization of high molecular weight polyaminoboranes, J. Am. Chem. Soc. 132 (2010) 13332-13345.

    7. [7]

      [7] J.F. Shen, L. Yang, K. Hu, W. Luo, G.Z. Cheng, Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage, Int. J. Hydrogen Energy 40 (2015) 1062-1070.

    8. [8]

      [8] L. Yang, J. Su, W. Luo, G.Z. Cheng, Strategic synthesis of graphene supported trimetallic Ag-based core-shell nanoparticles toward hydrolytic dehydrogenation of amine boranes, Int. J. Hydrogen Energy 39 (2014) 3360-3370.

    9. [9]

      [9] W.Q. Feng, L. Yang, N. Cao, et al., In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane, Int. J. Hydrogen Energy 39 (2014) 3371-3380.

    10. [10]

      [10] N. Cao, J. Su, W. Luo, G.Z. Cheng, Ni-Pt nanoparticles supported on MIL-101 as highly efficient catalysts for hydrogen generation from aqueous alkaline solution of hydrazine for chemical hydrogen storage, Int. J. Hydrogen Energy 39 (2014) 9726-9734.

    11. [11]

      [11] F. Durap, M. Zahmakıran, S.Ö zkar,Water soluble laurate-stabilized ruthenium (0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia- borane: high activity and long lifetime, Int. J. Hydrogen Energy 34 (2009) 7223-7230.

    12. [12]

      [12] M. Chandra, Q. Xu, Room temperature hydrogen generation from aqueous ammonia- borane using noble metal nano-clusters as highly active catalysts, J. Power Sources 168 (2007) 135-142.

    13. [13]

      [13] S. Akbayrak, S.Ö zkar, Ruthenium nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia borane, ACS Appl. Mater. Interfaces 4 (2012) 6302-6310.

    14. [14]

      [14] H.Y. Liang, G.Z. Chen, S. Desinan, et al., In situ facile synthesis of ruthenium nanocluster catalyst supported on carbon black for hydrogen generation from the hydrolysis of ammonia-borane, Int. J. Hydrogen Energy 37 (2012) 17921-17927.

    15. [15]

      [15] L. Wen, J. Su, X.J. Wu, et al., Ruthenium supported on MIL-96: an efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage, Int. J. Hydrogen Energy 39 (2014) 17129-17135.

    16. [16]

      [16] N. Cao, T. Liu, J. Su, et al., Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes, New J. Chem. 38 (2014) 4032-4035.

    17. [17]

      [17] R.H. Huang, J. Liu, L.S. Li, et al., Fe/MCM-41 as a promising heterogeneous catalyst for ozonation of p-chlorobenzoic acid in aqueous solution, Chin. Chem. Lett. 22 (2011) 683-686.

    18. [18]

      [18] Y.S. Du, N. Cao, L. Yang, et al., One-step synthesis of magnetically recyclable rGO supported Cu@Co core-shell nanoparticles: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane, New J. Chem. 37 (2013) 3035-3042.

    19. [19]

      [19] L. Yang, W. Luo, G.Z. Cheng, Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane, ACS Appl. Mater. Interfaces 5 (2013) 8231-8240.

    20. [20]

      [20] M. Rakap, Hydrogen generation from hydrolysis of ammonia borane in the presence of highly efficient poly (N-vinyl-2-pyrrolidone)-protected platinumruthenium nanoparticles, Appl. Catal. A: Gen. 478 (2014) 15-20.

    21. [21]

      [21] S. Akbayrak, S. Tanyıldızı, I. Morkan, S. Ö zkar, Ruthenium (0) nanoparticles supported on nanotitania as highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane, Int. J. Hydrogen Energy 39 (2014) 9628-9637.

    22. [22]

      [22] F. Durap, M. Zahmakıran, S. Ö zkar, Water soluble laurate-stabilized rhodium (0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia-borane, Appl. Catal. A: Gen. 369 (2009) 53-59.

    23. [23]

      [23] Ö . Metin, Ş . Ş ahin, S.Ö zkar, Water-soluble poly(4-styrenesulfonic acid-co-maleic acid) stabilized ruthenium (0) and palladium (0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia-borane, Int. J. Hydrogen Energy 34 (2009) 6304-6313.

    24. [24]

      [24] N. Cao, W. Luo, G.Z. Cheng, One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy 38 (2013) 11964-11972.

    25. [25]

      [25] M. Zahmakıran, S. Ö zkar, Zeolite framework stabilized rhodium (0) nanoclusters catalyst for the hydrolysis of ammonia-borane in air: outstanding catalytic activity, reusability and lifetime, Appl. Catal. B: Environ. 89 (2009) 104-110.

    26. [26]

      [26] H. Can, Ö . Metin, A facile synthesis of nearly monodisperse ruthenium nanoparticles and their catalysis in the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage, Appl. Catal. B: Environ. 125 (2012) 304-310.

    27. [27]

      [27] Q. Xu, M. Chandra, A portable hydrogen generation system: catalytic hydrolysis of ammonia-borane, J. Alloys Compd. 446-447 (2007) 729-732.

    28. [28]

      [28] H.M. Dai, J. Su, K. Hu, W. Luo, G.Z. Cheng, Pd nanoparticles supported on MIL-101 as high-performance catalysts for catalytic hydrolysis of ammonia borane, Int. J. Hydrogen Energy 39 (2014) 4947-4953.

    29. [29]

      [29] N. Cao, J. Su, W. Luo, et al., Graphene supported Ru@Co core-shell nanoparticles as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane, Catal. Commun. 43 (2014) 47-51.

    30. [30]

      [30] N. Cao, J. Su, W. Luo, et al., Hydrolytic dehydrogenation of ammonia borane and methylamine borane catalyzed by graphene supported Ru@Ni core-shell nanoparticles, Int. J. Hydrogen Energy 39 (2014) 426-435.

    31. [31]

      [31] G.Z. Chen, S. Deinasn, R. Nechache, et al., Bifunctional catalytic/magnetic Ni@Ru core-shell nanoparticles, Chem. Commun. 47 (2011) 6308-6310.

    32. [32]

      [32] N. Cao, J. Su, X.L. Hong, et al., In situ facile synthesis of Ru-based core-shell nanoparticles supported on carbon black and their high catalytic activity in the dehydrogenation of amine-boranes, Chem. Asian J. 9 (2014) 562-571.

    33. [33]

      [33] P.X. Xi, F.J. Chen, G.Q. Xie, et al., Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage, Nanoscale 4 (2012) 5597-5601.

    34. [34]

      [34] G.P. Rachiero, U.B. Demirci, P. Miele, Bimetallic RuCo and RuCu catalysts supported on g-Al2O3. A comparative study of their activity in hydrolysis of ammonia- borane, Int. J. Hydrogen Energy 36 (2011) 7051-7065.

    35. [35]

      [35] N. Cao, K. Hu, W. Luo, et al., Ru/Cu nanoparticles supported on graphene: a highly efficient catalyst for hydrolysis of ammonia borane, J. Alloys Compd. 590 (2014) 241-246.

  • 加载中
    1. [1]

      . 第41卷第1期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(1): -.

    2. [2]

      . 第41卷第3期封面和目次. Acta Physico-Chimica Sinica, 2025, 41(3): -.

    3. [3]

      . Cover and Table of Contents for Vol.41 No. 2. Acta Physico-Chimica Sinica, 2025, 41(2): -.

    4. [4]

      . Cover and Table of Contents for Vol.41 No. 4. Acta Physico-Chimica Sinica, 2025, 41(4): -.

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(0)
  • Abstract views(641)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return