Citation: Yogesh B. Wagh, Yogesh A. Tayade, Swapnil A. Padvi, Bhupesh S. Patil, Nilesh B. Patil, Dipak S. Dalal. A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives[J]. Chinese Chemical Letters, ;2015, 26(10): 1273-1277. doi: 10.1016/j.cclet.2015.06.014 shu

A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives

  • Corresponding author: Dipak S. Dalal, 
  • Received Date: 13 March 2015
    Available Online: 18 May 2015

    Fund Project: One of the authors (Y.B.W.) acknowledges UGC, New Delhi for SAP fellowship under the scheme 'Research Fellowship in Sciences for Meritorious Students'. The authors are also grateful to SAIF Panjab University for providing analytical facilities for characterization of compounds. (Y.B.W.)

  • A rapid, one-pot and highly efficient protocol for the synthesis of pharmaceutically interesting functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives has been developed using commercially available CsF as a catalyst in the reaction of malononitrile and aryl aldehydes or isatins with 1, 3-cyclohexanediones. The major advantages of this methodology are excellent yield at ambient temperature, very short reaction time (5-10 min), and use of an inexpensive catalyst.
  • 加载中
    1. [1]

      [1] B. Sharifzadeh, N.O. Mahmoodi, M. Mamaghani, et al., Facile regioselective synthesis of novel bioactive thiazolyl-pyrazoline derivatives via a three-component reaction and their antimicrobial activity, Bioorg. Med. Chem. Lett. 23(2013) 548-551.

    2. [2]

      [2] R. Hosseinnia, M. Mamaghani, K. Tabatabaeian, F. Shirini, M. Rassa, An expeditious regioselective synthesis of novel bioactive indole-substituted chromene derivatives via one-pot three-component reaction, Bioorg. Med. Chem. Lett. 22(2012) 5956-5960.

    3. [3]

      [3] N. Foroughifar, S. Ebrahimi, One-pot synthesis of 1,3-thiazolidin-4-one using bi(SCH2COOH)3 as catalyst, Chin. Chem. Lett. 24(2013) 389-391.

    4. [4]

      [4] R. Baharfar, S.M. Baghbanian, Synthesis of novel uracil based 2,5-diaminofurans using multi-component reactions, Chin. Chem. Lett. 23(2012) 677-680.

    5. [5]

      [5] L. Bonsignore, G. Loy, D. Secci, A. Calignano, Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives, Eur. J. Med. Chem. 28(1993) 517-520.

    6. [6]

      [6] L.F. Tietze, Secologanin, a biogenetic key compound-synthesis and biogenesis of the iridoid and secoiridoid glycosides, Angew. Chem. Int. Ed. Engl. 22(1983) 828-841.

    7. [7]

      [7] E.A.A. Hafez, M.H. Elnagdi, A.G.A. Elagamey, et al., Nitriles in heterocyclic synthesis:novel synthesis of benzo[c]coumarin and of benzo[c]pyrano[3,2-c]quinoline derivatives, Heterocycles 26(1987) 903-907.

    8. [8]

      [8] (a) H. Hong, L.J. Huang, D.W. Teng, A spirocyclic oxindole analogue:synthesis and antitumor activities, Chin. Chem. Lett. 22(2011) 1009-1012;

    9. [9]

      (b) D.-C. Wang, Y.-M. Xie, C. Fan, et al., Efficient and mild cyclization procedures for the synthesis of novel 2-amino-4H-pyran derivatives with potential antitumor activity, Chin. Chem. Lett. 25(2014) 1011-1013.

    10. [10]

      [9] D. Kumar, V.B. Reddy, S. Sharad, et al., A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes, Eur. J. Med. Chem. 44(2009) 3805-3809.

    11. [11]

      [10] C.B. Sangani, D.C. Mungra, M.P. Patel, et al., Synthesis and in vitro antimicrobial screening of new pyrano[4,3-b]pyran derivatives of 1H-pyrazole, Chin. Chem. Lett. 23(2012) 57-60.

    12. [12]

      [11] (a) W. Kemnitzer, S. Kasibhatla, S. Jiang, et al., Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based highthroughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions, Bioorg. Med. Chem. Lett. 15(2005) 4745-4751;

    13. [13]

      (b) S. Kasibhatla, H. Gourdeau, K. Meerovitch, et al., Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity, Mol. Cancer Ther. 3(2004) 1365-1374.

    14. [14]

      [12] D. Armesto, W.M. Horspool, N. Martin, et al., Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans, J. Org. Chem. 54(1989) 3069-3072.

    15. [15]

      [13] M. Chennapuram, N.R. Emmadi, C. Bingi, et al., Group-assisted purification (GAP) chemistry for dihydrofurans:water as a medium for catalyst free synthesis in a one pot four component reaction, Green Chem. 16(2014) 3237-3246.

    16. [16]

      [14] A.R. Moosavi-Zare, M.A. Zolfigol, O. Khaledian, et al., Tandem Knoevenagel- Michael-cyclocondensation reactions of malononitrile, various aldehydes and dimedone using acetic acid functionalized ionic liquid, New J. Chem. 38(2014) 2342-2347.

    17. [17]

      [15] M.G. Dekamin, M. Eslami, Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans under mechanochemical ball milling, Green Chem. 16(2014) 4914-4921.

    18. [18]

      [16] M.N. Elinson, A.S. Dorofeev, S.K. Feducovich, et al., The implication of electrocatalysis in MCR strategy:electrocatalytic multicomponent transformation of cyclic 1,3-diketones, aldehydes and malononitrile into substituted 5,6,7,8-tetrahydro-4H-chromenes, Eur. J. Org. Chem. 19(2006) 4335-4339.

    19. [19]

      [17] V.M. Joshi, L.P.B. Rupali, Throat, et al., Novel one-pot synthesis of 4H-chromene derivatives using amino functionalized silica gel catalyst, Chin. Chem. Lett. 25(2014) 455-458.

    20. [20]

      [18] (a) N. Azizi, S. Dezfooli, M.M. Hashemi, Synthesis of spirooxindole in deep eutectic solvent, J. Mol. Liq. 194(2014) 62-67;

    21. [21]

      (b) Y. Li, H. Chen, C. Shi, et al., Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium, J. Comb. Chem. 12(2010) 231-237;

    22. [22]

      (c) M. Kidwai, A. Jahan, N.K. Mishra, et al., Gold(III) chloride (HAuCl4·3H2O) in PEG:a new and efficient catalytic system for the synthesis of functionalized spirochromenes, Appl. Catal. A 425(2012) 35-43;

    23. [23]

      (d) B.M. Rao, G.N. Reddy, T.V. Reddy, et al., Carbon-SO3H:a novel and recyclable solid acid catalyst for the synthesis of spiro[4H-pyran-3,30-oxindoles], Tetrahedron Lett. 54(2013) 2466-2471.

    24. [24]

      [19] X. Lian, Y. Huang, Y. Li, et al., A green synthesis of tetrahydrobenzo[b]pyran derivatives through three-component condensation using N-methylimidazole as organocatalyst, Monatsh. Chem. 139(2008) 129-131.

    25. [25]

      [20] T.S. Jin, A.Q. Wang, F. Shi, et al., Hexadecyldimethyl benzyl ammonium bromide:an efficient catalyst for a clean one-pot synthesis of tetrahydrobenzopyran derivatives in water, ARKIVOC xiv (2006) 78-86.

    26. [26]

      [21] R. Hekmatshoar, S. Majedi, K. Bakhtiari, Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives, Catal. Commun. 9(2008) 307-310.

    27. [27]

      [22] D. Tahmassebi, J. Bryson, S. Binz, 1,4-Diazabicyclo[2.2.2] octane as an efficient catalyst for a clean, one-pot synthesis of tetrahydrobenzo[b]pyran derivatives via multicomponent reactioninaqueousmedia, Synth.Commun.41(2011)2701-2711.

    28. [28]

      [23] X. Wang, D. Shi, S. Tu, et al., Convenient synthesis of 5-oxo-5,6,7,8-tetrahydro-4Hbenzo-[b]-pyran derivatives catalyzed by KF-alumina, Synth. Commun. 33(2003) 119-126.

    29. [29]

      [24] G. Sabitha, K. Arundhathi, K. Sudhakar, et al., Cerium(III) chloride-catalyzed onepot synthesis of tetrahydrobenzo[b]pyrans, Synth. Commun. 39(2009) 433-442.

    30. [30]

      [25] S. Balalaie, M. Sheikh-Ahmadi, M. Bararjanian, Tetra-methyl ammonium hydroxide:an efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media, Catal. Commun. 8(2007) 1724-1728.

    31. [31]

      [26] S. Balalaie, M. Bararjanian, M. Sheikh-Ahmadi, et al., Diammonium hydrogen phosphate:an efficient and versatile catalyst for the one pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media, Synth. Commun. 37(2007) 1097-1108.

    32. [32]

      [27] M.M. Heravi, Y.S. Beheshtiha, Z. Pirnia, et al., One-pot, three-component synthesis of 4H-pyrans using Cu(II) oxymetasilicate, Synth. Commun. 39(2009) 3663-3667.

    33. [33]

      [28] M. Seifi, H. Sheibani, High surface area MgO as a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media, Catal. Lett. 126(2008) 275-279.

    34. [34]

      [29] R.S. Bhosale, C.V. Magar, K.S. Solanke, et al., Molecular iodine:an efficient catalyst for the synthesis of tetrahydrobenzo[b]pyrans, Synth. Commun. 37(2007) 4353-4357.

    35. [35]

      [30] G.K. Friestad, B.P. Branchaud, W. Navarrini, M. Sansotera, Cesium fluoride, in:e-EROSEncyclopedia ofReagents forOrganicSynthesis, 2007, http://dx.doi.org/10.1002/047084289X.rc050.pub2.

    36. [36]

      [31] K.P. Nandre, V.S. Patil, S.V. Bhosale, CsF mediated rapid condensation of 1,3-cyclohexadione with aromatic aldehydes:comparative study of conventional heating vs. ambient temperature, Chin. Chem. Lett. 22(2011) 777-780.

    37. [37]

      [32] (a) Y.A. Tayade, D.R. Patil, Y.B. Wagh, et al., An efficient synthesis of 3-indolyl-3-hydroxy oxindoles and 3,3-di(indolyl)indolin-2-ones catalyzed by sulfonated β-CD as a supramolecular catalyst in water, Tetrahedron Lett. 56(2015) 666-673;

    38. [38]

      (b) A.D. Jangale, P.K. Kumavat, Y.B. Wagh, et al., Green process development for the synthesis of aliphatic symmetrical N,N'-disubstituted thiourea derivatives in aqueous medium, Synth. Commun. 45(2015) 236-244;

    39. [39]

      (c) D.R. Patil, Y.B. Wagh, P.G. Ingole, et al., β-Cyclodextrin-mediated highly efficient[2+3] cycloaddition reactions for the synthesis of 5-substituted 1Htetrazoles, New J. Chem. 37(2013) 3261-3270;

    40. [40]

      (d) D.R. Patil, D.S. Dalal, Biomimetic approach for the synthesis of N,N'-diarylsubstituted formamidines catalyzed by β-cyclodextrin in water, Chin. Chem. Lett. 23(2012) 1125-1130.

    41. [41]

      [33] K.M. Khan, I. Khan, S. Perveen, et al., A rapid and efficient CsF catalyzed tandem Knoevenagel-Michael reaction, J. Fluor. Chem. 158(2014) 1-5.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    3. [3]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    4. [4]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    5. [5]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    6. [6]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    7. [7]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    8. [8]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    9. [9]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    10. [10]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    11. [11]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    12. [12]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    13. [13]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    14. [14]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    15. [15]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    16. [16]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    17. [17]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    18. [18]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    19. [19]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    20. [20]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

Metrics
  • PDF Downloads(0)
  • Abstract views(670)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return