Citation: Hao-Ran Xu, Kun Li, Shu-Yan Jiao, Ling-Ling Li, Sheng-Lin Pan, Xiao-Qi Yu. Tetraphenylethene based zinc complexes as fluorescent chemosensors for pyrophosphate sensing[J]. Chinese Chemical Letters, ;2015, 26(7): 877-880. doi: 10.1016/j.cclet.2015.05.037 shu

Tetraphenylethene based zinc complexes as fluorescent chemosensors for pyrophosphate sensing

  • Corresponding author: Kun Li,  Xiao-Qi Yu, 
  • Received Date: 25 January 2015
    Available Online: 24 April 2015

    Fund Project: This work was financially supported by the National Program on Key Basic Research Project of China (973 Program, Nos. 2012CB720603, 2013CB328900) (973 Program, Nos. 2012CB720603, 2013CB328900)

  • We described a serious of zinc complexes that exhibit characteristic fluorescence responses toward pyrophosphate (PPi) and adenosine triphosphate (ATP) in aqueous media. These novel probes exploited tetraphenylethene (TPE) as fluorophore and macrocycle-polyamine (including 1,4,7,10-tetraazacyclododecane and 1,4,7-triazacyclononane) Zn(II) complexes as binding group. These “OFF-ON” type probes exhibited promising selectivity and sensitivity to PPi and ATP via a restriction of intramolecular rotation (RIR) mechanism. The detection limit for PPi was found within nmol/L range.
  • 加载中
    1. [1]

      [1] R.K. Pathak, K. Tabbasum, A. Rai, D. Panda, C.P. Rao, Pyrophosphate sensing by a fluorescent Zn2+ bound triazole linked imino-thiophenyl conjugate of calix[4]arene in HEPES buffer medium: spectroscopy, microscopy, and cellular studies, Anal. Chem. 84 (2012) 5117–5123.

    2. [2]

      [2] B.K. Datta, S. Mukherjee, C. Kar, A. Ramesh, G. Das, Zn2+ and pyrophosphate sensing: selective detection in physiological conditions and application in DNA-based estimation of bacterial cell numbers, Anal. Chem. 85 (2013) 8369–8375.

    3. [3]

      [3] S. Anbu, R. Ravishankaran, M.F.C.G. da Silva, A.A. Karande, A.J.L. Pombeiro, Differentially selective chemosensor with fluorescence off–on responses on Cu2+ and Zn2+ ions in aqueous media and applications in pyrophosphate sensing, live cell imaging, and cytotoxicity, Inorg. Chem. 53 (2014) 6655–6664.

    4. [4]

      [4] P.J. Xie, M.L. Ye, Z.Y. Hu, et al., Determination of levels of adenosine phosphates in blood by ion chromatography, Chin. Chem. Lett. 22 (2011) 1485–1488.

    5. [5]

      [5] X.M. Zhou, L. Jia, Detection of telomerase activity by combination of telomeric repeat amplification protocol and electrochemiluminescence assay, Chin. Chem. Lett. 19 (2008) 699–702.

    6. [6]

      [6] R.K. Pathak, V.K. Hinge, A. Rai, D. Panda, C.P. Rao, Imino-phenolic–pyridyl conjugates of calix[4]arene (L1 and L2) as primary fluorescence switch-on sensors for Zn2+ in solution and in HeLa cells and the recognition of pyrophosphate and ATP by [ZnL2], Inorg. Chem. 51 (2012) 4994–5005.

    7. [7]

      [7] J.F. Zhang, S. Kim, J.H. Han, et al., Pyrophosphate-selective fluorescent chemosensor based on 1,8-naphthalimide DPA Zn(II) complex and its application for cell imaging, Org. Lett. 13 (2011) 5294–5297.

    8. [8]

      [8] W.H. Chen, Y. Xing, Y. Pang, A highly selective pyrophosphate sensor based on ESIPT turn-on in water, Org. Lett. 13 (2011) 1362–1365.

    9. [9]

      [9] M. Yousuf, N. Ahmed, B. Shirinfar, et al., Precise tuning of cationic cyclophanes toward highly selective fluorogenic recognition of specific biophosphate anions, Org. Lett. 16 (2014) 2150–2153.

    10. [10]

      [10] X.M. Huang, Z.Q. Guo, W.H. Zhu, Y.S. Xie, H. Tian, A colorimetric and fluorescent turn-on sensor for pyrophosphate anion based on a dicyanomethylene-4H-chromene framework, Chem. Commun. 41 (2008) 5143–5145.

    11. [11]

      [11] W.H. Zhu, X.M. Huang, Z.Q. Guo, et al., A novel NIR fluorescent turn-on sensor for the detection of pyrophosphate anion in complete water system, Chem. Commun. 48 (2012) 1784–1786.

    12. [12]

      [12] N. Shao, H. Wang, X.D. Gao, R.H. Yang, W.H. Chan, Spiropyran-based fluorescent anion probe and its application for urinary pyrophosphate detection, Anal. Chem. 82 (2010) 4628–4636.

    13. [13]

      [13] S. Kim, M.S. Eom, S.K. Kim, S.H. Seo, M.S. Han, A highly sensitive gold nanoparticlebased colorimetric probe for pyrophosphate using a competition assay approach, Chem. Commun. 49 (2013) 152–154.

    14. [14]

      [14] S. Bhowmik, B.N. Ghosh, V. Marjomäki, K. Rissanen, Nanomolar pyrophosphate detection in water and in a self-assembled hydrogel of a simple terpyridine–Zn2+ complex, J. Am. Chem. Soc. 136 (2014) 5543–5546.

    15. [15]

      [15] M. Kumar, N. Kumar, V. Bhalla, A naphthalimide based chemosensor for Zn2+, pyrophosphate and H2O2: sequential logic operations at the molecular level, Chem. Commun. 49 (2013) 877–879.

    16. [16]

      [16] S. Anbu, S. Kamalraj, C. Jayabaskaran, P.S. Mukherjee, Naphthalene carbohydrazone based dizinc(II) chemosensor for a pyrophosphate ion and its DNA assessment application in polymerase chain reaction products, Inorg. Chem. 52 (2013) 8294–8296.

    17. [17]

      [17] O.G. Tsay, S.T. Manjare, H. Kim, et al., Novel reversible Zn2+-assisted biological phosphate “turn-on” probing through stable aryl-hydrazone salicylaldimine conjugation that attenuates ligand hydrolysis, Inorg. Chem. 52 (2013) 10052–10061.

    18. [18]

      [18] H.R. Xu, K. Li, Q. Liu, et al., Dianthracene–cyclen conjugate: the first equalequivalent responding fluorescent chemosensor for Pb2+ in aqueous solution, Analyst 138 (2013) 2329–2334.

    19. [19]

      [19] Z.H. Zeng, A.A.J. Torriero, A.M. Bond, L. Spiccia, Fluorescent and electrochemical sensing of polyphosphate nucleotides by ferrocene functionalised with two ZnII(TACN)(pyrene) complexes, Chem. Eur. J. 16 (2010) 9154–9163.

    20. [20]

      [20] C.W.T. Leung, Y.N. Hong, J. Hanske, et al., Superior fluorescent probe for detection of cardiolipin, Anal. Chem. 86 (2014) 1263–1268.

    21. [21]

      [21] Y.Y. Yuan, R.T.K. Kwok, G.X. Feng, et al., Rational design of fluorescent light-up probes based on an AIE luminogen for targeted intracellular thiol imaging, Chem. Commun. 50 (2014) 295–297.

    22. [22]

      [22] H.R. Xu, K. Li, M.Q. Wang, et al., The dicyclen–TPE zinc complex as a novel fluorescent ensemble for nanomolar pyrophosphate sensing in 100% aqueous solution, Org. Chem. Front. 1 (2014) 1276–1279.

    23. [23]

      [23] D.D. Li, J.H. Yu, R.R. Xu, Mesoporous silica functionalized with an AIE luminogen for drug delivery, Chem. Commun. 47 (2011) 11077–11079.

    24. [24]

      [24] F. Vögtle, N. Wester, Vielfach ü berbrü ckte aromatische Verbindungen, XI. Vierfach verklammertes Tetraphenylethene, Eur. J. Org. Chem. 1978 (2006) 545–551.

    25. [25]

      [25] Y. Yu, J. Li, S.J. Chen, et al., Thiol-reactive molecule with dual-emission-enhancement property for specific prestaining of cysteine containing proteins in SDSPAGE, ACS Appl. Mater. Interfaces 5 (2013) 4613–4616.

    26. [26]

      [26] S. Rakshit, S. Vasudevan, Resonance energy transfer from β-cyclodextrin-capped ZnO:MgO nanocrystals to included nile red guest molecules in aqueous media, ACS Nano 2 (2008) 1473–1479.

  • 加载中
    1. [1]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    2. [2]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    3. [3]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    4. [4]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    5. [5]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    6. [6]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    7. [7]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    8. [8]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    9. [9]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    10. [10]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    11. [11]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    12. [12]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    13. [13]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    14. [14]

      Zhengyi ShiJie YinYang XiaoZhangrong HouFei SongJianping WangQingyi TongChangxing QiYonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458

    15. [15]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    16. [16]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    17. [17]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    20. [20]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

Metrics
  • PDF Downloads(0)
  • Abstract views(586)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return