Citation: Shou-Bing Yi, Hong-Fei Gao, Quan Li, Ya-Fei Ye, Na Wu, Xiao-Hong Cheng. Synthesis and self-assembly behavior of 2,5-diphenylethynyl thiophene based bolaamphiphiles[J]. Chinese Chemical Letters, ;2015, 26(7): 872-876. doi: 10.1016/j.cclet.2015.05.031
-
Novel T-shaped bolaamphiphiles consisting of a bent 2,5-diphenylethynyl thiophene rigid core with two terminal glycerol units and a lateral n-alkyl chain have been synthesized via Kumuda and Sonogashira coupling reactions as key steps. Their liquid crystalline behavior was investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). All such bolaamphiphiles can self-organize into square honeycomb LC phases with p4mm symmetries in the presence of water. UV and PL measurements indicate fluorescent properties making them potential candidates for application in fluorescence sensor devices.
-
Keywords:
- Lyotropic liquid crystals,
- Bolaamphiphiles,
- Bent core,
- Acetylene
-
-
[1]
[1] (a) J.M. Lehn, Toward complex matter: supramolecular chemistry and selforganization, Proc. Natl. Acad. Sci. U S A 99 (2002) 4763–4768; (b) S. Förster, T. Plantenberg, From self-organizing polymers to nanohybrid and biomaterials, Angew. Chem. Int. Ed. 41 (2002) 688–714; (c) F.J.M. Hoeben, P. Jonkheijm, E.W. Meijer, et al., About supramolecular assemblies of π-conjugated systems, Chem. Rev. 105 (2005) 1491–1546; (d) J.J.L.M. Cornelissen, A.E. Rowan, R.J.M. Nolte, et al., Chiral architectures from macromolecular building blocks, Chem. Rev. 101 (2001) 4039–4070.
-
[2]
[2] (a) A. Ajayaghosh, C. Vijayakumar, R. Varghese, et al., Transcription and amplification of molecular chirality to oppositely biased supramolecular π helices, Angew. Chem. Int. Ed. 45 (2006) 1141–1144; (b) M. Lee, B.K. Cho, W.C. Zin, Supramolecular structures from rod coil block copolymers, Chem. Rev. 101 (2001) 3869–3892.
-
[3]
[3] J.W. Goodby, J.P. Collings, T. Kato, et al., Handbook of Liquid Crystals, second ed., Wiley-VCH, Weinheim, Germany, 2014.
-
[4]
[4] M. Bremer, P. Kirsch, M. Klasen-Memmer, et al., The TV in your pocket: development of liquid-crystal materials for the new millennium, Angew. Chem. Int. Ed. 52 (2013) 8880–8896.
-
[5]
[5] C. Tschierske, Development of structural complexity by liquid crystal self-assembly, Angew. Chem. Int. Ed. 52 (2013) 8828–8878.
-
[6]
[6] (a) D.R. Link, G. Natale, R. Shao, et al., Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules, Science 278 (1997) 1924–1927; (b) R.A. Reddy, C. Tschierske, Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems, J. Mater. Chem. 16 (2006) 907–961; (c) H. Takezoe, Y. Takanishi, Bent-core liquid crystals: their mysterious and attractive world, Jpn. J. Appl. Phys. 45 (2006) 597–625; (d) A. Eremin, A. Jakli, Polar bent-shape liquid crystals – from molecular bend to layer splay and chirality, Soft Matter 9 (2013) 615–637.
-
[7]
[7] (a) M. Kölbel, T. Beyersdorff, X.H. Cheng, et al., Design of liquid crystalline block molecules with nonconventional mesophase morphologies: calamitic bolaamphiphiles with lateral alkyl chains, J. Am. Chem. Soc. 123 (2001) 6809–6818; (b) X.H. Cheng, M. Prehm, M.K. Das, et al., Calamitic bolaamphiphiles with (semi)perfluorinated lateral chains: polyphilic block molecules with new liquid crystalline phase structures, J. Am. Chem. Soc. 125 (2003) 10977–10996; (c) M. Prehm, F. Liu, U. Baumeister, et al., The giant-hexagon cylinder network – a liquid-crystalline organization formed by a T-shaped quaternary amphiphile, Angew. Chem. Int. Ed. 46 (2007) 7972–7975; (d) M. Prehm, C. Enders, M.Y. Anzahaee, et al., Distinct columnar and lamellar liquid crystalline phases formed by new bolaamphiphiles with linear and branched lateral hydrocarbon chains, Chem. Eur. J. 14 (2008) 6352–6368.
-
[8]
[8] (a) C. Tschierske, Liquid crystal engineering–new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering, Chem. Soc. Rev. 36 (2007) 1930–1970; (b) C. Tschierske, C. Nurnberger, H. Ebert, et al. Interface Focus 2 (2011) 669–680; (c) G. Ungar, C. Tschierske, V. Abetz, et al., Self-assembly at different length scales: polyphilic star-branched liquid crystals and miktoarm star copolymers, Adv. Funct. Mater. 21 (2011) 1296–1323.
-
[9]
[9] X.H. Cheng, X. Dong, R. Huang, et al., Polygonal cylinder phases of 3-alkyl-2,5- diphenylthiophene-based bolaamphiphiles: changing symmetry by retaining net topology, Chem. Mater. 20 (2008) 4729–4738.
-
[10]
[10] (a) M. Prehm, G. Götz, P. Bäuerle, et al., Complex liquid-crystalline superstructure of a π-conjugated oligothiophene, Angew. Chem. Int. Ed. 46 (2007) 7856–7859; (b) X.H. Cheng, X. Dong, G.H. Wei, et al., Liquid-crystalline triangle honeycomb formed by a dithiophene based X-shaped bolaamphiphile, Angew. Chem. Int. Ed. 48 (2009) 8014–8017.
-
[11]
[11] H.F. Gao, Y.F. Ye, L.Y. Kong, et al., Dithiophene based X-shaped bolaamphiphiles: liquid crystals with single wall honeycombs and geometric frustration, Soft Matter 8 (2012) 10921–10931.
-
[12]
[12] X.H. Cheng, H.F. Gao, X.P. Tan, et al., Transition between triangular and square tiling patterns in liquid-crystalline honeycombs formed by tetrathiophene-based bolaamphiphiles, Chem. Sci. 4 (2013) 3317–3331.
-
[13]
[13] W. Bu, H.F. Gao, X.P. Tan, et al., A bolaamphiphilic sexithiophene with liquid crystalline triangular honeycomb phase, Chem. Commun. 49 (2013) 1756–1758.
-
[14]
[14] (a) B. Glettner, F. Liu, X.B. Zeng, et al., Liquid-crystal engineering with anchorshaped molecules: honeycombs with hexagonal and trigonal symmetries formed by polyphilic bent-core molecules, Angew. Chem. Int. Ed. 47 (2008) 6080–6083; (b) B. Glettner, F. Liu, X.B. Zeng, et al., Liquid-crystalline kagome, Angew. Chem. Int. Ed. 47 (2008) 9063–9066; (c) X.B. Zeng, R. Kieffer, B. Glettner, et al., Complex multicolor tilings and critical phenomena in tetraphilic liquid crystals, Science 331 (2011) 1302–1306.
-
[15]
[15] G. Hennrich, A. Omenat, I. Asselberghs, et al., Liquid crystals from C3-symmetric mesogens for second-order nonlinear optics, Angew. Chem. Int. Ed. 45 (2006) 4203–4206.
-
[16]
[16] B. Glettner, F. Liu, X.B. Zeng, et al., Liquid-crystal engineering with anchor-shaped molecules: honeycombs with hexagonal and trigonal symmetries formed by polyphilic bent-core molecules, Angew. Chem. Int. Ed. 47 (2008) 6080–6083.
-
[17]
[17] H.F. Gao, H.F. Cheng, Q.J. Liu, et al., Tolane-based bent bolaamphiphiles forming liquid crystalline hexagonal honeycombs with trigonal symmetry, New J. Chem. 39 (2015) 2060–2066.
-
[18]
[18] C.V. Pham, H.B. Mark, H. Zimmer, A convenient synthesis of 3-alkylthiophenes, Synthetic Commun. 16 (1986) 689–696.
-
[19]
[19] M. Melucci, G. Barbarella, M. Zambianchi, et al., Solution-phase microwaveassisted synthesis of unsubstituted and modified a-quinque- and sexithiophenes, J. Org. Chem. 69 (2004) 4821–4828.
-
[20]
[20] X.P. Tan, L.Y. Kong, H. Dai, et al., Triblock polyphiles through click chemistry: selfassembled thermotropic cubic phase formed by micellar and monolayer vescular aggregates, Chem. Eur. J. 19 (2013) 16303–16313.
-
[21]
[21] R. Strzycki, Pyridinium tosylate, a mild catalyst for formation and cleavage of dioxolane-type acetals, Synthesis (1979) 724–725.
-
[22]
[22] (a) T. Ichikawa, M. Yoshio, S. Taguchi, et al., Co-organisation of ionic liquids with amphiphilic diethanolamines: construction of 3D continuous ionic nanochannels through the induction of liquid-crystalline bicontinuous cubic phases, Chem. Sci. 3 (2012) 2001–2008; (b) E.C. Wijaya, T.L. Greaves, C.J. Drummond, Linking molecular/ion structure, solvent mesostructure, the solvophobic effect and the ability of amphiphiles to self-assemble in non-aqueous liquids, Faraday Discuss. 167 (2013) 191–215.
-
[23]
[23] (a) H.S. Frank, W.Y. Wen, Ion-solvent interaction, structural aspects of ionsolvent interaction in aqueous solutions: a suggested picture of water structure, Discuss. Faraday Soc. 24 (1957) 133–140; (b) L.J. Bellamy, R.L. Pace, Hydrogen bonding by alcohols and phenols—I. The nature of the hydrogen bond in alcohol dimers and polymers, Spectrochim. Acta 22 (1966) 525–534; (c) H. Kleeberg, in: P.L. Huyskens, W.A.P. Luck, T. Zeegers (Eds.), Intermolecular Forces: An Introduction to Modern Methods and Results, Springer, Berlin, 1999, pp. 251–280.
-
[24]
[24] I. Kataoka, N. Kitadai, O. Hisatomi, et al., Nature of hydrogen bonding of water molecules in aqueous solutions of glycerol by attenuated total reflection (ATR) infrared spectroscopy, Appl. Spectrosc. 65 (2011) 436–441.
-
[25]
[25] (a) Y. Kanemitsu, N. Shimizu, K. Suzuki, et al., Optical and structural properties of oligothiophene crystalline films, Phys. Rev. B 54 (1996) 2198–2204; (b) A. Yassar, G. Horowitz, P. Valat, et al., Exciton coupling effects in the absorption and photoluminescence of sexithiophene derivatives, J. Phys. Chem. 99 (1995) 9155–9159; (c) T. Yasuda, K. Kishimoto, T. Kato, Columnar liquid crystalline π-conjugated oligothiophenes, Chem. Commun. (2006) 3399–3401; (d) X.H. Cheng, F. Liu, X.B. Zeng, et al., Influence of flexible spacers on liquidcrystalline self-assembly of T-shaped bolaamphiphiles, J. Am. Chem. Soc. 133 (2011) 7872–7881.
-
[26]
[26] (a) Z.P. Liu, C.L. Zhang, W.J. He, et al., A charge transfer type pH responsive fluorescent probeandits intracellularapplication,NewJ.Chem.34(2010) 656–660; (b) S. Yao, K.J. Schafer-Hales, K.D. Belfield, A new water-soluble near-neutral ratiometric fluorescent pH indicator, Org. Lett. 9 (2007) 5645–5648.
-
[27]
[27] Q. Yan, Z. Luo, K. Cai, et al., Chemical designs of functional photoactive molecular assemblies, Chem. Soc. Rev. 43 (2014) 4199–4221.
-
[1]
-
-
[1]
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
-
[2]
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508
-
[3]
Shaoming Dong , Yiming Niu , Yinghui Pu , Yongzhao Wang , Bingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525
-
[4]
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
-
[5]
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
-
[6]
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
-
[7]
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
-
[8]
Gangsheng Li , Xiang Yuan , Fu Liu , Zhihua Liu , Xujie Wang , Yuanyuan Liu , Yanmin Chen , Tingting Wang , Yanan Yang , Peicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880
-
[9]
Lizhang Chen , Yu Fang , Mingxin Pang , Ruoxu Sun , Lin Xu , Qixing Zhou , Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461
-
[10]
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
-
[11]
Xin Dong , Jing Liang , Zhijin Xu , Huajie Wu , Lei Wang , Shihai You , Junhua Luo , Lina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708
-
[12]
Jaeyong Ahn , Zhenping Li , Zhiwei Wang , Ke Gao , Huagui Zhuo , Wanuk Choi , Gang Chang , Xiaobo Shang , Joon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777
-
[13]
Jiajing Wu , Ru-Ling Tang , Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291
-
[14]
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
-
[15]
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
-
[16]
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
-
[17]
Jie Wu , Xiaoqing Yu , Guoxing Li , Su Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234
-
[18]
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
-
[19]
Haoyang Wang , Ronghao Zhang , Yanlun Ren , Li Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833
-
[20]
Wangyan Hu , Ke Li , Xiangnan Dou , Ning Li , Xiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(577)
- HTML views(13)