Citation: Hui Zhang, Fei Huang, De-Lei Liu, Peng Shi. Highly efficient removal of Cr(VI) from wastewater via adsorption with novel magnetic Fe3O4@C@MgAl-layered double-hydroxide[J]. Chinese Chemical Letters, ;2015, 26(9): 1137-1143. doi: 10.1016/j.cclet.2015.05.026
-
Novel magnetic Fe3O4@C@MgAl-layered double-hydroxide (LDH) nanoparticles have been successfully prepared by the chemical self-assembly methods. The properties of surface functional groups, crystal structure, magnetism and surface morphology of magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravity-differential thermal gravity (TG-DTG), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The adsorption studies of the novel adsorbent in removing heavy metals Cr (VI) from waste water showed that the maximum absorption amount of Cr(VI) was 152.0 mg/g at 40℃ and pH 6.0. The excellent adsorption capacity of the Fe3O4@C@MgAl-LDH nano-absorbents plus their easy separation, environmentally friendly composition and reusability makes them more suitable adsorbents for the removal of metal ions from waste water.
-
-
[1]
[1] J. Hu, G. Chen, I. Lo, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle:performance and mechanisms, J. Environ. Eng. 132(2006) 709-715.
-
[2]
[2] V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling-an overview, RSC Adv. 2(2012) 6380-6388.
-
[3]
[3] V.K. Gupta, T.A. Saleh, Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-an overview, Environ. Sci. Pollut. Res. 20(2013) 2828-2843.
-
[4]
[4] V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of aluminacoated carbon nanotubes and their application for lead removal, J. Hazard. Mater. 185(2011) 17-23.
-
[5]
[5] J. Hu, G. Chen, I.M.C. Lo, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Res. 39(2005) 4528-4536.
-
[6]
[6] J. Hu, I.M.C. Lo, G. Chen, Removal of Cr(VI) by magnetite nanoparticle, Water Sci. Technol. 50(2004) 139-146.
-
[7]
[7] K. Chen, G.H. Wang, W.B. Li, et al., Application of response surface methodology for optimization of Orange II removal by heterogeneous Fenton-like process using Fe3O4 nanoparticles, Chin. Chem. Lett. 25(2014) 1455-1460.
-
[8]
[8] Y.L. Lei, F. Chen, Y.J. Luo, L. Zhang, Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal, J. Mater. Sci. 49(2014) 4236-4245.
-
[9]
[9] S.X. Zhang, Y.Y. Zhang, J.S. Liu, et al., Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal,, Chem. Eng. J. 226(2013) 30-38.
-
[10]
[10] W. Jiang, W.F. Wang, B.C. Pan, et al., Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal, ACS Appl. Mater. Interfaces 6(2014) 3421-3426.
-
[11]
[11] K. Zargoosh, H. Abedini, A. Abdolmaleki, M.R. Molavian, Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles, Ind. Eng. Chem. Res. 52(2013) 14944-14954.
-
[12]
[12] F. Ge, M.M. Li, H. Ye, B.X. Zhao, Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles, J. Hazard. Mater. 211-212(2012) 366-372.
-
[13]
[13] J.F. Liu, Z.S. Zhao, G.B. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol. 42(2008) 6949-6954.
-
[14]
[14] W. Yantasee, C.L. Warner, T. Sangvanich, et al., Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles, Environ. Sci. Technol. 41(2007) 5114-5119.
-
[15]
[15] Y.H. Deng, D.W. Qi, C.H. Deng, X.M. Zhang, D.Y. Zhao, Superparamagnetic highmagnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins, J. Am. Chem. Soc. 130(2007) 28-29.
-
[16]
[16] M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite, J. Hazard. Mater. 190(2011) 381-390.
-
[17]
[17] Y.Q. Wang, B.F. Zou, T. Gao, et al., Synthesis of orange-like Fe3O4/PPy composite microspheres and their excellent Cr(VI) ion removal properties, J. Mater. Chem. 22(2012) 9034-9040.
-
[18]
[18] Z.Y.Zhang, J.L.Kong,Novelmagnetic Fe3O4@Cnanoparticles as adsorbents for removal of organic dyes from aqueous solution, J. Hazard. Mater. 193(2011) 325-329.
-
[19]
[19] S.C. Han, L.F. Hu, Z.Q. Liang, et al., One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/Graphene composites with enhanced photocatalytic activity, Adv. Funct. Mater. 24(2014) 5719-5727.
-
[20]
[20] K. Cheng, Y.M. Zhou, Z.Y. Sun, et al., Synthesis of carbon-coated, porous and waterdispersive Fe3O4 nanocapsules and their excellent performance for heavy metal removal applications, Dalton Trans. 41(2012) 5854-5861.
-
[21]
[21] H. Zhang, D.L. Liu, L.L. Zeng, M. Li, b-Cyclodextrin assisted one-pot synthesis of mesoporous magnetic Fe3O4@C and their excellent performance for the removal of Cr(VI) from aqueous solutions, Chin. Chem. Lett. 24(2013) 341-343.
-
[22]
[22] K.H. Goh, T.T. Lim, Z.L. Dong, Application of layered double hydroxides for removal of oxyanions:a review, Water Res. 42(2008) 1343-1368.
-
[23]
[23] Y.J. Li, B.Y. Gao, T. Wu, et al., Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide, Water Res. 43(2009) 3067-3075.
-
[24]
[24] J. Zheng, Z.Q. Liu, X.S. Zhao, et al., One-step solvothermal synthesis of Fe3O4@C core-shell nanoparticles with tunable sizes, Nanotechnology 23(2012) 165601.
-
[25]
[25] Y.F. Zhao, S. He, M. Wei, D.G. Evans, X. Duan, Hierarchical films of layered double hydroxides by using a sol-gel process and their high adaptability in water treatment, Chem. Commun. 46(2010) 3031-3033.
-
[26]
[26] M. Shao, F. Ning, J. Zhao, et al., Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins, J. Am. Chem. Soc. 134(2011) 1071-1077.
-
[27]
[27] M.Y. Zhu, G.W. Diao, Magnetically recyclable Pd nanoparticles immobilized on magnetic Fe3O4@C nanocomposites:preparation, characterization, and their catalytic activity toward Suzuki and Heck coupling reactions, J. Phys. Chem. C 115(2011) 24743-24749.
-
[28]
[28] M. Răcuciu, Synthesis protocol influence on aqueous magnetic fluid properties, Curr. Appl. Phys. 9(2009) 1062-1066.
-
[29]
[29] Y. Sahoo, A. Goodarzi, M.T. Swihart, et al., Aqueous ferrofluid of magnetite nanoparticles:fluorescence labeling and magnetophoretic control, J. Phys. Chem. B 109(2005) 3879-3885.
-
[30]
[30] R. Xu, H.C. Zeng, Synthesis of nanosize supported hydrotalcite-like compounds CoAlx(OH)2+2x(CO3)y(NO3)x-2y·nH2Oon γ-Al2O3, Chem. Mater. 13(2001) 297-303.
-
[31]
[31] F. Cavani, F. Trifiro`, A. Vaccari, Hydrotalcite-type anionic clays:preparation, properties and applications,, Catal. Today 11(1991) 173-301.
-
[32]
[32] F.R. Costa, A. Leuteritz, U. Wagenknecht, et al., Intercalation of Mγ-Al layered double hydroxide by anionic surfactants:Preparation and characterization, Appl. Clay Sci. 38(2008) 153-164.
-
[33]
[33] K. Selvi, S. Pattabhi, K. Kadirvelu, Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Bioresour. Technol. 80(2001) 87-89.
-
[34]
[34] H. Jabeen, V. Chandra, S. Jung, et al., Enhanced Cr(VI) removal using iron nanoparticle decorated graphene, Nanoscale 3(2011) 3583-3585.
-
[35]
[35] C.Y. Cao, J. Qu, W.S. Yan, et al., Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal:adsorption property and mechanism, Langmuir 28(2012) 4573-4579.
-
[36]
[36] Z.H. Ai, Y. Cheng, L.Z. Zhang, J.R. Qiu, Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires, Environ. Sci. Technol. 42(2008) 6955-6960.
-
[37]
[37] N. Daneshvar, D. Salari, S. Aber, Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake, J. Hazard. Mater. 94(2002) 49-61.
-
[38]
[38] K. Fytianos, E. Voudrias, E. Kokkalis, Sorption-desorption behaviour of 2,4-dichlorophenol by marine sediments, Chemosphere 40(2000) 3-6.
-
[39]
[39] N.K. Hamadi, X.D. Chen, M.M. Farid, M.G.Q. Lu, Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust, Chem. Eng. J. 84(2001) 95-105.
-
[40]
[40] V.K. Singh, P.N. Tiwari, Removal and recovery of chromium(VI) from industrial waste water, J. Chem. Technol. Biotechnol. 69(1997) 376-382.
-
[1]
-
-
[1]
Mengyuan Li , Xitong Ren , Yanmei Gao , Mengyao Mu , Shiping Zhu , Shufang Tian , Minghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699
-
[2]
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
-
[3]
Jiaxuan Wang , Tonghe Liu , Bingxiang Wang , Ziwei Li , Yuzhong Niu , Hou Chen , Ying Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900
-
[4]
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
-
[5]
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
-
[6]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[7]
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
-
[8]
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
-
[9]
Chong Liu , Nanthi Bolan , Anushka Upamali Rajapaksha , Hailong Wang , Paramasivan Balasubramanian , Pengyan Zhang , Xuan Cuong Nguyen , Fayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960
-
[10]
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
-
[11]
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
-
[12]
Dan Luo , Jinya Tian , Jianqiao Zhou , Xiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444
-
[13]
Xudong Zhao , Yuxuan Wang , Xinxin Gao , Xinli Gao , Meihua Wang , Hongliang Huang , Baosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901
-
[14]
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
-
[15]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[16]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[17]
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
-
[18]
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
-
[19]
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2024.100200
-
[20]
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(664)
- HTML views(37)