Citation: Teng-Jie Ren, Juan Zhang, Yan-Hui Hu, Jun-Pan Li, Meng-Shuai Liu, Di-Shun Zhao. Extractive desulfurization of fuel oil with metal-based ionic liquids[J]. Chinese Chemical Letters, ;2015, 26(9): 1169-1173. doi: 10.1016/j.cclet.2015.05.023 shu

Extractive desulfurization of fuel oil with metal-based ionic liquids

  • Corresponding author: Juan Zhang, 
  • Received Date: 5 February 2015
    Available Online: 29 April 2015

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (No. 21106032) (No. 21106032)

  • Several metal-based ionic liquids (ILs) were synthesized and used as extractants for the desulfurization of dibenzothiophene (DBT) in simulated fuel oil. The effects of several anion and metal ions, n(ILs)/n(metal) as mole ratio, VIL/Voil and extractive times on the removal ratio of DBT were investigated in detail. The results showed that [BMIM]HSO4/FeCl3(BMIM was short for 1-butyl-3-methyl imidazole) was superior to the other ILs for the extractive desulfurization. A total of 100% of DBT was removed at room temperature in 5 min with V[BMIM]HSO4=FeCl3=Voil=1:1. The extractive activity of [BMIM]HSO4/FeCl3 IL did not change almost after five runs. Extractive desulfurization of different sulfur compounds and commercial diesel fuel oil were also examined. The removal ratios of the sulfur compounds as the reaction substrates were all over 90% and the sulfur content of commercial diesel oil decreased to 120 ppm from 12,400 ppm.
  • 加载中
    1. [1]

      [1] D.S. Zhao, J.L. Wang, E.P. Zhou, Oxidative desulfurization of diesel fuel using a Brønsted acid room temperature ionic liquid in the presence of H2O2, Green Chem. 9(2007) 1219-1222.

    2. [2]

      [2] H.M. Li, W.S. Zhu, Y. Wang, et al., Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride, Green Chem. 11(2009) 810-815.

    3. [3]

      [3] D.S. Zhao, Y.N. Wang, E.H. Duan, J. Zhang, Oxidation desulfurization of fuel using pyridinium-based ionic liquids as phase-transfer catalysts, Fuel Process. Technol. 91(2010) 1803-1806.

    4. [4]

      [4] H.Y. Lü, J.B. Gao, Z.X. Jiang, et al., Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets, J. Catal. 239(2006) 369-375.

    5. [5]

      [5] L.N. He, H.M. Li, W.S. Zhu, et al., Deep oxidative desulfurization of fuels using peroxophosphomolybdate catalysts in ionic liquids, Ind. Eng. Chem. Res. 47(2008) 6890-6895.

    6. [6]

      [6] F.T. Li, R.H. Liu, J.H. Wen, et al., Desulfurization of dibenzothiophene by chemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2 ionic liquid, Green Chem. 11(2009) 883-888.

    7. [7]

      [7] S. Dhir, R. Uppaluri, M.K. Purkait, Oxidative desulfurization:kinetic modeling, J. Hazard. Mater. 161(2009) 1360-1368.

    8. [8]

      [8] J. Zhang, A.J. Wang, X. Li, X.H. Ma, Oxidative desulfurization of dibenzothiophene and diesel over [Bmim]3PMo12O40, J. Catal. 279(2011) 269-275.

    9. [9]

      [9] A.E.S. Choi, S. Roces, N. Dugos, et al., Optimization of ultrasound-assisted oxidative desulfurization of model sulfur compounds using commercial ferrate (VI), J. Taiwan Inst. Chem. Eng. 45(2014) 2935-2942.

    10. [10]

      [10] K. Kirimura, T. Furuya, Y. Nishii, et al., Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterim Bacillus subtilis WU-S2B, J. Biosci. Bioeng. 91(2001) 262-266.

    11. [11]

      [11] L.Z. Zhai, Q. Zhong, C. He, J. Wang, Hydroxyl ammonium ionic liquids synthesized by water-bath microwave:synthesis and desulfurization, J. Hazard. Mater. 161(2009) 1360-1368.

    12. [12]

      [12] C. Asumana, G.R. Yu, X. Li, et al., Extractive desulfurization of fuel oils with lowviscosity dicyanamide-based ionic liquids, Green Chem. 12(2010) 2030-2037.

    13. [13]

      [13] W.N.A.W. Mokhtar, W.A.W.A. Bakar, R. Ali, A.A.A. Kadir, Deep desulfurization of model diesel by extraction with N,N-dimethylformamide:optimization by Box-Behnken design, J. Taiwan Inst. Chem. Eng. 45(2014) 1542-1548.

    14. [14]

      [14] A. Srivastav, V.C. Srivastava, Adsorptive desulfurization by activated alumina, J. Hazard. Mater. 170(2009) 1133-1140.

    15. [15]

      [15] J.L. Wang, D.S. Zhao, K.X. Li, Oxidative desulfurization of dibenzothiophene using ozone and hydrogen peroxide in ionic liquid, Energy Fuels 24(2010) 2527-2529.

    16. [16]

      [16] A. Bösmann, L. Datsevich, A. Jess, et al., Deep desulfurization of diesel fuel by extraction with ionic liquids, Chem. Commun. (2001) 2494-2495.

    17. [17]

      [17] Y. Nie, C.X. Li, A.J. Sun,H.Meng, Z.H.Wang, Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids, Energy Fuels 20(2006) 2083-2087.

    18. [18]

      [18] J.L. Wang, D.S. Zhao, E.P. Zhou, Z. Dong, Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids, J. Fuel Chem. Technol. 35(2007) 293-296.

    19. [19]

      [19] S.Q. Zhang, Z.C. Zhang, Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature, Green Chem. 4(2002) 376-379.

    20. [20]

      [20] B.-M. Su, S.G. Zhang, Z.C. Zhang, Structural elucidation of thiophene interaction with ionic liquids by multinuclear NMR spectroscopy, J. Phys. Chem. B 108(2004) 19510-19517.

    21. [21]

      [21] I.J.B. Lin, C.S. Vasam, Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety, J. Organomet. Chem. 690(2005) 3498-3512.

    22. [22]

      [22] C.M. Zhong, T. Sasaki, A. Jimbo-Kobayashi, et al., Syntheses, structures, and properties of a series of metal ion-containing dialkylimidazolium ionic liquids, Bull. Chem. Soc. Jpn. 80(2007) 2365-2374.

    23. [23]

      [23] S.G. Zhang, Q.L. Zhang, Z.C. Zhang, Extractive desulfurization and denitrogenation of fuels using ionic liquids, Ind. Eng. Chem. Res. 43(2004) 614-622.

    24. [24]

      [24] C.P. Huang, B.H. Chen, J. Zhang, Z.C. Liu, Y.X. Li, Desulfurization of gasoline by extraction with new ionic liquids, Energy Fuels 18(2004) 1862-1864.

    25. [25]

      [25] N.H. Ko, J.S. Lee, E.S. Huh, et al., Extractive desulfurization using Fe-containing ionic liquids, Energy Fuels 22(2008) 1687-1690.

    26. [26]

      [26] G. Neeraj, L.K. Goverdhan, S. Jasvinder, Enhancing nucleophilicity in ionic liquid [bmim]HSO4:a recyclable media and catalyst for the halogenation of alcohols, J. Mol. Catal. A:Chem. 302(2009) 11-14.

    27. [27]

      [27] D. Kogelnig, A. Stojanovic, F. Jirsa, et al., Transport and separation of iron (III) from nickel (II) with the ionic liquid trihexyl (tetradecyl) phosphonium chloride, Sep. Purif. Technol. 72(2010) 56-60.

    28. [28]

      [28] Y.Q. Jiang, W.S. Zhu, H.M. Li, et al., Oxidative desulfurization of fuels catalyzed by Fenton-Like ionic liquids at room temperature, ChemSusChem 4(2011) 399-403.

    29. [29]

      [29] F.T. Li, Y. Liu, Z.M. Sun, et al., Deep extractive desulfurization of gasoline with XEt3NHCl3FeCl3 ionic liquids, Energy Fuels 24(2010) 4285-4289.

    30. [30]

      [30] L. Alonso, A. Arce, M. Francisco, O. Rodríguez, A. Soto, Gasoline desulfurization using extraction with [C8mim][BF4] ionic liquid, AIChE J. 53(2007) 3108-3115.

  • 加载中
    1. [1]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    2. [2]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    3. [3]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    6. [6]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    7. [7]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    10. [10]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    11. [11]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    12. [12]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    13. [13]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    14. [14]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    15. [15]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    16. [16]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    17. [17]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    18. [18]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(0)
  • Abstract views(608)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return