Citation:
Rong-Yan Yang, Chun-Yan Bao, Qiu-Ning Lin, Lin-Yong Zhu. A light-regulated synthetic ion channel constructed by an azobenzene modified hydraphile[J]. Chinese Chemical Letters,
;2015, 26(7): 851-856.
doi:
10.1016/j.cclet.2015.05.010
-
Biological ion channels are key molecules for cellular regulation and communication. To mimic the structure and functions of nature ion channels, a new class of light-regulated transmembrane ion channels was reported based on tri(macrocycle) hydraphile and azobenzene photoswitch (hydraphile 1). The liposome-based proton transport assays showed that hydraphile 1 exhibited excellent transmembrane activity (Y), and Ymax arrived 0.7 at 40 mmol/L. The successful isomerization of azobenzene moiety was confirmed and qualified by UV and NMR spectra. Upon alternative irradiation of 365 nm UV light and 450 nm visuble light, the transmembrane activity of hydraphile 1 was regulated between 0.35 and 0.5, reversubly. All the obtained results have demonstrated the promise of developing excellent synthetic ion channels with ion gating properties based on simple molecular design.
-
-
-
[1]
[1] (a) C. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer, A. Heckel, Light-controlled tools, Angew. Chem. Int. Ed. 51 (2012) 8446–8476; (b) A.A. Beharry, G.A. Woolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev. 40 (2011) 4422–4437; (c) D. Habault, H. Zhang, Y. Zhao, Light-triggered self-healing and shape-memory polymers, Chem. Soc. Rev. 42 (2013) 7244–7256.
-
[2]
[2] (a) W. Szymański, J.M. Beierle, H.A.V. Kistemaker, W.A. Velema, B.L. Feringa, Reversible photocontrol of biological systems by the incorporation of molecular photoswitches, Chem. Rev. 113 (2013) 6114–6178; (b) R. Givens, M.B. Kotala, J.I. Lee, Dynamic Studies in Biology, Wiley-VCH Verlag GmbH & Co. KGaA, 2005, pp. 95–129; (c) P. Gorostiza, E. Isacoff, Optical switches and triggers for the manipulation of ion channels and pores, Mol. BioSyst. 3 (2007) 686–704.
-
[3]
[3] G. Nagel, D. Ollig, M. Fuhrmann, et al., Conversion of channelrhodopsin into a light-gated chloride channel, Science 296 (2002) 2395–2398.
-
[4]
[4] (a) R.J. Thompson, M.F. Jackson, M.E. Olah, et al., Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus, Science 322 (2008) 1555–1559; (b) S. Sundelacruz, M. Levin, D.L. Kaplan, Role of membrane potential in the regulation of cell proliferation and differentiation, Stem Cell Rev. Rep. 5 (2009) 231–246.
-
[5]
[5] (a) M.R. Banghart, M. Volgraf, D. Trauner, Engineering light-gated ion channels, Biochemistry 45 (2006) 15129–15141; (b) T. Fehrentz, M. Schönberger, D. Trauner, Optochemische genetik, Angew. Chem. Int. Ed. 50 (2011) 12156–12182; (c) M.R. Banghart, A. Mourot, D.L. Fortin, et al., Photochromic blockers of voltagegated potassium channels, Angew. Chem. Int. Ed. 48 (2009) 9097–9101; (d) M. Volgraf, P. Gorostiza, R. Numano, et al., Allosteric control of an ionotropic glutamate receptor with an optical switch, Nat. Chem. Biol. 2 (2006) 47–52.
-
[6]
[6] (a) A. Koçer, M. Walko, W. Meijberg, B.L. Feringa, A light-actuated nanovalve derived from a channel protein, Science 309 (2005) 755–758; (b) W. SzymaŃski, D. Yilmaz, A. Koçer, B.L. Feringa, Bright ion channels and lipid bilayers, Acc. Chem. Res. 46 (2013) 2910–2923; (c) C. Bao, H. Jia, T. Liu, Y. Wang, W. Peng, L. Zhu, Synthesis of artificial ion channels in bilayer membrane, Prog. Chem. 24 (2012) 1337–1345.
-
[7]
[7] (a) P.V. Jog, M.S. Gin, A light-gated synthetic ion channel, Org. Lett. 10 (2008) 3693–3696; (b) P. Osman, S. Martin, D. Milojevic, C. Tansey, F. Separovic, Optical modulation of the insertion of gramicidin into bilayer lipid membranes, Langmuir 14 (1998) 4238–4242.
-
[8]
[8] (a) V. Borisenko, D.C. Burns, Z. Zhang, G.A. Woolley, Optical switching of iondipole interactions in a gramicidin channel analogue, J. Am. Chem. Soc. 122 (2000) 6364–6370; (b) L. Lien, D.C.J. Jaikaran, Z. Zhang, G.A. Woolley, Photomodulated blocking of gramicidin ion channels, J. Am. Chem. Soc. 118 (1996) 12222–12223.
-
[9]
[9] L. Husaru, R. Schulze, G. Steiner, et al., Potential analytical applications of gated artificial ion channels, Anal. Bioanal. Chem. 382 (2005) 1882–1888.
-
[10]
[10] (a) A.A. Beharry, G.A. Wolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev. 40 (2011) 4422–4437; (b) D.G. Flint, J.R. Kumita, O.S. Smart, G.A. Woolley, Using an azobenzene crosslinker to either increase or decrease peptide helix content upon trans-to-cis photoisomerization, Chem. Biol. 9 (2002) 391–397; (c) M.L. Rahman, G. Hegde, S.M. Sarkar, M.M. Yusoff, Synthesis and photoswitching properties of azobenzene liquid crystals with a pentafluorobenzene terminal, Chin. Chem. Lett. 25 (2014) 1611–1614.
-
[11]
[11] (a) T. Liu, C. Bao, H. Wang, et al., Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis–trans photoisomerization, Chem. Commun. 49 (2013) 10311–10313; (b) T. Liu, C. Bao, H. Wang, et al., Self-assembly of crown ether-based amphiphiles for constructing synthetic ion channels: the relationship between structure and transport activity, New J. Chem. 38 (2014) 3507–3513; (c) C.L. Murray, G.W. Gokel, Spacer chain length dependence in hydraphile channels: implications for channel position within phospholipid bilayers, J. Supramol. Chem. 1 (2001) 23–30.
-
[12]
[12] (a) G.W. Gokel, S. Negin, Synthetic ion channels: from pores to biological applications, Acc. Chem. Res. 46 (2013) 2824–2833; (b) A. Nakano, Q. Xie, J.V. Mallen, L. Echegoyen, G.W. Gokel, Synthesis of a membrane-insertable, sodium cation conducting channel: kinetic analysis by dynamic 23Na NMR, J. Am. Chem. Soc. 112 (1990) 1287–1289; (c) G.W. Gokel, Hydraphiles: design, synthesis and analysis of a family of synthetic, cation-conducting channels, Chem. Commun. 1 (2000) 1–9; (d) C.L. Murray, H. Shabany, G.W. Gokel, The central ‘relay' unit in hydraphile channels as a model for the water- and-ion ‘capsule' of channel proteins, Chem. Commun. 23 (2000) 2371–2372; (e) M.E. Weber, P.H. Schlesinger, G.W. Gokel, Dynamic assessment of bilayer thickness by varying phospholipid and hydraphile synthetic channel chain lengths, J. Am. Chem. Soc. 127 (2005) 636–642; (f) O. Murillo, I. Suzuki, E. Abel, et al., Synthetic transmembrane channels: functional characterization using solubility calculations, transport studies, and substituent effects, J. Am. Chem. Soc. 119 (1997) 5540–5549; (g) W.M. Leevy, G.M. Donato, R. Ferdani, et al., Synthetic hydraphile channels of appropriate length kill Escherichia coli, J. Am. Chem. Soc. 124 (2002) 9022– 9023; (h) B.A. Smith, M.M. Daschbach, S.T. Gammon, et al., In vivo cell death mediated by synthetic ion channels, Chem. Commun. 47 (2011) 7977–7979.
-
[13]
[13] C.P. Wilson, C. Boglio, L. Ma, S.L. Cockroft, S.J. Webb, Palladium(II)-mediated assembly of biotinylated ion channels, Chem. Eur. J. 17 (2011) 3465–3473.
-
[1]
-
-
-
[1]
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
-
[2]
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
-
[3]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[4]
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
-
[5]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[6]
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
-
[7]
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
-
[8]
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
-
[9]
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
-
[10]
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
-
[11]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[12]
Zengchao Guo , Weiwei Liu , Tengfei Liu , Jinpeng Wang , Hui Jiang , Xiaohui Liu , Yossi Weizmann , Xuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060
-
[13]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[14]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[15]
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
-
[16]
Bing Niu , Honggao Huang , Liwei Luo , Li Zhang , Jianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431
-
[17]
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
-
[18]
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
-
[19]
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
-
[20]
Guanyang Zeng , Xingqiang Liu , Liangqiao Wu , Zijie Meng , Debin Zeng , Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(601)
- HTML views(21)