Citation: Rong-Yan Yang, Chun-Yan Bao, Qiu-Ning Lin, Lin-Yong Zhu. A light-regulated synthetic ion channel constructed by an azobenzene modified hydraphile[J]. Chinese Chemical Letters, ;2015, 26(7): 851-856. doi: 10.1016/j.cclet.2015.05.010 shu

A light-regulated synthetic ion channel constructed by an azobenzene modified hydraphile

  • Corresponding author: Chun-Yan Bao,  Lin-Yong Zhu, 
  • Fund Project: This work was supported by NNSFC (Nos. 51273064, 21472044) (Nos. 51273064, 21472044)

  • Biological ion channels are key molecules for cellular regulation and communication. To mimic the structure and functions of nature ion channels, a new class of light-regulated transmembrane ion channels was reported based on tri(macrocycle) hydraphile and azobenzene photoswitch (hydraphile 1). The liposome-based proton transport assays showed that hydraphile 1 exhibited excellent transmembrane activity (Y), and Ymax arrived 0.7 at 40 mmol/L. The successful isomerization of azobenzene moiety was confirmed and qualified by UV and NMR spectra. Upon alternative irradiation of 365 nm UV light and 450 nm visuble light, the transmembrane activity of hydraphile 1 was regulated between 0.35 and 0.5, reversubly. All the obtained results have demonstrated the promise of developing excellent synthetic ion channels with ion gating properties based on simple molecular design.
  • 加载中
    1. [1]

      [1] (a) C. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer, A. Heckel, Light-controlled tools, Angew. Chem. Int. Ed. 51 (2012) 8446–8476; (b) A.A. Beharry, G.A. Woolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev. 40 (2011) 4422–4437; (c) D. Habault, H. Zhang, Y. Zhao, Light-triggered self-healing and shape-memory polymers, Chem. Soc. Rev. 42 (2013) 7244–7256.

    2. [2]

      [2] (a) W. Szymański, J.M. Beierle, H.A.V. Kistemaker, W.A. Velema, B.L. Feringa, Reversible photocontrol of biological systems by the incorporation of molecular photoswitches, Chem. Rev. 113 (2013) 6114–6178; (b) R. Givens, M.B. Kotala, J.I. Lee, Dynamic Studies in Biology, Wiley-VCH Verlag GmbH & Co. KGaA, 2005, pp. 95–129; (c) P. Gorostiza, E. Isacoff, Optical switches and triggers for the manipulation of ion channels and pores, Mol. BioSyst. 3 (2007) 686–704.

    3. [3]

      [3] G. Nagel, D. Ollig, M. Fuhrmann, et al., Conversion of channelrhodopsin into a light-gated chloride channel, Science 296 (2002) 2395–2398.

    4. [4]

      [4] (a) R.J. Thompson, M.F. Jackson, M.E. Olah, et al., Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus, Science 322 (2008) 1555–1559; (b) S. Sundelacruz, M. Levin, D.L. Kaplan, Role of membrane potential in the regulation of cell proliferation and differentiation, Stem Cell Rev. Rep. 5 (2009) 231–246.

    5. [5]

      [5] (a) M.R. Banghart, M. Volgraf, D. Trauner, Engineering light-gated ion channels, Biochemistry 45 (2006) 15129–15141; (b) T. Fehrentz, M. Schönberger, D. Trauner, Optochemische genetik, Angew. Chem. Int. Ed. 50 (2011) 12156–12182; (c) M.R. Banghart, A. Mourot, D.L. Fortin, et al., Photochromic blockers of voltagegated potassium channels, Angew. Chem. Int. Ed. 48 (2009) 9097–9101; (d) M. Volgraf, P. Gorostiza, R. Numano, et al., Allosteric control of an ionotropic glutamate receptor with an optical switch, Nat. Chem. Biol. 2 (2006) 47–52.

    6. [6]

      [6] (a) A. Koçer, M. Walko, W. Meijberg, B.L. Feringa, A light-actuated nanovalve derived from a channel protein, Science 309 (2005) 755–758; (b) W. SzymaŃski, D. Yilmaz, A. Koçer, B.L. Feringa, Bright ion channels and lipid bilayers, Acc. Chem. Res. 46 (2013) 2910–2923; (c) C. Bao, H. Jia, T. Liu, Y. Wang, W. Peng, L. Zhu, Synthesis of artificial ion channels in bilayer membrane, Prog. Chem. 24 (2012) 1337–1345.

    7. [7]

      [7] (a) P.V. Jog, M.S. Gin, A light-gated synthetic ion channel, Org. Lett. 10 (2008) 3693–3696; (b) P. Osman, S. Martin, D. Milojevic, C. Tansey, F. Separovic, Optical modulation of the insertion of gramicidin into bilayer lipid membranes, Langmuir 14 (1998) 4238–4242.

    8. [8]

      [8] (a) V. Borisenko, D.C. Burns, Z. Zhang, G.A. Woolley, Optical switching of iondipole interactions in a gramicidin channel analogue, J. Am. Chem. Soc. 122 (2000) 6364–6370; (b) L. Lien, D.C.J. Jaikaran, Z. Zhang, G.A. Woolley, Photomodulated blocking of gramicidin ion channels, J. Am. Chem. Soc. 118 (1996) 12222–12223.

    9. [9]

      [9] L. Husaru, R. Schulze, G. Steiner, et al., Potential analytical applications of gated artificial ion channels, Anal. Bioanal. Chem. 382 (2005) 1882–1888.

    10. [10]

      [10] (a) A.A. Beharry, G.A. Wolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev. 40 (2011) 4422–4437; (b) D.G. Flint, J.R. Kumita, O.S. Smart, G.A. Woolley, Using an azobenzene crosslinker to either increase or decrease peptide helix content upon trans-to-cis photoisomerization, Chem. Biol. 9 (2002) 391–397; (c) M.L. Rahman, G. Hegde, S.M. Sarkar, M.M. Yusoff, Synthesis and photoswitching properties of azobenzene liquid crystals with a pentafluorobenzene terminal, Chin. Chem. Lett. 25 (2014) 1611–1614.

    11. [11]

      [11] (a) T. Liu, C. Bao, H. Wang, et al., Light-controlled ion channels formed by amphiphilic small molecules regulate ion conduction via cis–trans photoisomerization, Chem. Commun. 49 (2013) 10311–10313; (b) T. Liu, C. Bao, H. Wang, et al., Self-assembly of crown ether-based amphiphiles for constructing synthetic ion channels: the relationship between structure and transport activity, New J. Chem. 38 (2014) 3507–3513; (c) C.L. Murray, G.W. Gokel, Spacer chain length dependence in hydraphile channels: implications for channel position within phospholipid bilayers, J. Supramol. Chem. 1 (2001) 23–30.

    12. [12]

      [12] (a) G.W. Gokel, S. Negin, Synthetic ion channels: from pores to biological applications, Acc. Chem. Res. 46 (2013) 2824–2833; (b) A. Nakano, Q. Xie, J.V. Mallen, L. Echegoyen, G.W. Gokel, Synthesis of a membrane-insertable, sodium cation conducting channel: kinetic analysis by dynamic 23Na NMR, J. Am. Chem. Soc. 112 (1990) 1287–1289; (c) G.W. Gokel, Hydraphiles: design, synthesis and analysis of a family of synthetic, cation-conducting channels, Chem. Commun. 1 (2000) 1–9; (d) C.L. Murray, H. Shabany, G.W. Gokel, The central ‘relay' unit in hydraphile channels as a model for the water- and-ion ‘capsule' of channel proteins, Chem. Commun. 23 (2000) 2371–2372; (e) M.E. Weber, P.H. Schlesinger, G.W. Gokel, Dynamic assessment of bilayer thickness by varying phospholipid and hydraphile synthetic channel chain lengths, J. Am. Chem. Soc. 127 (2005) 636–642; (f) O. Murillo, I. Suzuki, E. Abel, et al., Synthetic transmembrane channels: functional characterization using solubility calculations, transport studies, and substituent effects, J. Am. Chem. Soc. 119 (1997) 5540–5549; (g) W.M. Leevy, G.M. Donato, R. Ferdani, et al., Synthetic hydraphile channels of appropriate length kill Escherichia coli, J. Am. Chem. Soc. 124 (2002) 9022– 9023; (h) B.A. Smith, M.M. Daschbach, S.T. Gammon, et al., In vivo cell death mediated by synthetic ion channels, Chem. Commun. 47 (2011) 7977–7979.

    13. [13]

      [13] C.P. Wilson, C. Boglio, L. Ma, S.L. Cockroft, S.J. Webb, Palladium(II)-mediated assembly of biotinylated ion channels, Chem. Eur. J. 17 (2011) 3465–3473.

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    3. [3]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    4. [4]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    5. [5]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    6. [6]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    7. [7]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    8. [8]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    9. [9]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    10. [10]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    11. [11]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    12. [12]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    13. [13]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    14. [14]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    15. [15]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    16. [16]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    17. [17]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    18. [18]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    19. [19]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    20. [20]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

Metrics
  • PDF Downloads(0)
  • Abstract views(601)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return