Citation: Sheng-Ping Wang, Jing-Jie Zhou, Shu-Yang Zhao, Yu-Jun Zhao, Xin-Bin Ma. Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide: The in situ hydrolysis of 2-cyanopyridine and crystal face effect of ceria[J]. Chinese Chemical Letters, ;2015, 26(9): 1096-1100. doi: 10.1016/j.cclet.2015.05.005 shu

Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide: The in situ hydrolysis of 2-cyanopyridine and crystal face effect of ceria

  • Corresponding author: Sheng-Ping Wang, 
  • Received Date: 2 April 2015
    Available Online: 27 April 2015

    Fund Project: Financial support by Natural Science Foundation of China (NSFC, Nos. 21176179, U1462122) (NSFC, Nos. 21176179, U1462122)

  • This paper describes the effect of the in situ hydrolysis of 2-cyanopyridine and its derivatives on the synthesis of dimethyl carbonate (DMC) from CO2 and methanol over CeO2. 2-Cyanopyridine, with the highest electronic charge number of the carbon in the cyanogroup, is the most effective agent to accelerate the desired reaction by a decrease of water. CeO2(110) planes are active for the hydrolysis of 2-cyanopyridine, further enhancing the DMC formation by in situ removal of water effectively. The DMC yield is improved drastically up to 378.5 mmol g cat-1 from 12.8 mmol g cat-1 with the in situ hydrolysis of 2-cyanopyridine over rod-CeO2(110) catalyst.
  • 加载中
    1. [1]

      [1] H. Wang, M.H. Wang, N. Zhao, W. Wei, Y.H. Sun, CaO-ZrO2 solid solution:a highly stable catalyst for the synthesis of dimethyl carbonate from propylene carbonate and methanol, Catal. Lett. 105(2005) 253-257.

    2. [2]

      [2] N. Keller, G. Rebmann, V. Keller, Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis, J. Mol. Catal. A:Chem. 317(2010) 1-18.

    3. [3]

      [3] A. Aouissi, A.W. Apblett, Z.A. AL-Othman, A. Al-Amro, Direct synthesis of dimethyl carbonate from methanol and carbon dioxide using heteropolyoxometalates:the effects of cation and addenda atoms, Transit. Metal Chem. 35(2010) 927-931.

    4. [4]

      [4] Y. Li, X.Q. Zhao, Y.J. Wang, Synthesis of dimethyl carbonate from methanol, propylene oxide and carbon dioxide over KOH/4A molecular sieve catalyst, Appl. Catal. A:Gen. 279(2005) 205-208.

    5. [5]

      [5] C.J. Jiang, Y.H. Guo, C.G. Wang, et al., Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions, Appl. Catal. A:Gen. 256(2003) 203-212.

    6. [6]

      [6] K.H. Kim, D.W. Kim, C.W. Kim, J.C. Koh, D.W. Park, Synthesis of dimethyl carbonate from transesterification of ethylene carbonate with methanol using immobilized ionic liquid on commercial silica, Korean J. Chem. Eng. 27(2010) 1441-1445.

    7. [7]

      [7] C.F. Li, S.H. Zhong, Study on application ofmembrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu-KF/MgSiO catalyst, Catal. Today 82(2003) 83-90.

    8. [8]

      [8] S. Wada, K. Oka, K. Watanabe, Y. Izumi, Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism, Front. Chem. 1(2013) 8.

    9. [9]

      [9] J. Bian, M. Xiao, S.J. Wang, Y.X. Lu, Y.Z. Meng, Carbon nanotubes supported Cu-Ni bimetallic catalysts and their properties for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide, Appl. Surf. Sci. 255(2009) 7188-7196.

    10. [10]

      [10] Y.J. Zhou, M. Xiao, S.J. Wang, et al., Effects of Mo promoters on the Cu-Fe bimetal catalysts for the DMC formation from CO2 and methanol, Chin. Chem. Lett. 24(2013) 307-310.

    11. [11]

      [11] J. Bian, M. Xiao, S.J. Wang, Y.X. Lu, Y.Z. Meng, Highly effective direct synthesis of DMC from CH3OH and CO2 using novel Cu-Ni/C bimetallic composite catalysts, Chin. Chem. Lett. 20(2009) 352-355.

    12. [12]

      [12] H.J. Lee, W. Joe, J.C. Jung, I.K. Song, Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3-CeO2-ZrO2 catalysts prepared by a single-step sol-gel method:effect of acidity and basicity of the catalysts, Korean J. Chem. Eng. 29(2012) 1019-1024.

    13. [13]

      [13] E. Leino, N. Kumar, P. Mäki-Arvela, et al., Influence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate, Mater. Chem. Phys. 143(2013) 65-75.

    14. [14]

      [14] Y. Yoshida, Y. Arai, S. Kado, K. Kunimori, K. Tomishige, Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts, Catal. Today 115(2006) 95-101.

    15. [15]

      [15] A. Orrego Romero, C. Montes de Correa, F. Bustamante Lodoño, Preparation and characterization of Mg-modified zirconias as catalysts for the direct synthesis of dimethyl carbonate (DMC), Rev. Fac. Ing. 1(2011) 14-22.

    16. [16]

      [16] C.W. Sun, H. Li, L.Q. Chen, Nanostructured ceria-based materials:synthesis, properties, and applications, Energy Environ. Sci. 5(2012) 8475-8505.

    17. [17]

      [17] M. Honda, M. Tamura, Y. Nakagawa, K. Tomishige, Catalytic CO2 conversion to organic carbonates with alcohols in combination with dehydration system, Catal. Sci. Technol. 4(2014) 2830-2845.

    18. [18]

      [18] J.C. Choi, L.N. He, H. Yasuda, T. Sakakura, Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol, Green Chem. 4(2002) 230-234.

    19. [19]

      [19] V. Eta, P. Mäki-Arvela, J. Wärnå, et al., Kinetics of dimethyl carbonate synthesis from methanol and carbon dioxide over ZrO2-MgO catalyst in the presence of butylene oxide as additive, Appl. Catal. A:Gen. 404(2011) 39-46.

    20. [20]

      [20] S.N. Fang, K. Fujimoto, Direct synthesis of dimethyl carbonate from carbon dioxide and methanol catalyzed by base, Appl. Catal. A:Gen. 142(1996) L1-L3.

    21. [21]

      [21] M. Honda, A. Suzuki, B. Noorjahan, et al., Low pressure CO2 to dimethyl carbonate by the reaction with methanol promoted by acetonitrile hydration, Chem. Commun. (2009) 4596-4598.

    22. [22]

      [22] M. Tamura, H. Wakasugi, K.I. Shimizu, A. Satsuma, Efficient and substrate-specific hydration of nitriles to amides in water by using a CeO2 catalyst, Chem. Eur. J. 17(2011) 11428-11431.

    23. [23]

      [23] M. Honda, M. Tamura, Y. Nakagawa, et al., Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine:scope and mechanistic studies, J. Catal. 318(2014) 95-107.

    24. [24]

      [24] M. Honda, M. Tamura, Y. Nakagawa, et al., Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine, ChemSusChem 6(2013) 1341-1344.

    25. [25]

      [25] Z.L. Wu, M.J. Li, J. Howe, H.M. Meyer, S.H. Overbury, Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption, Langmuir 26(2010) 16595-16606.

    26. [26]

      [26] S.P. Wang, L.F. Zhao, W. Wang, et al., Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol, Nanoscale 5(2013) 5582-5588.

    27. [27]

      [27] K. Tomishige, K. Kunimori, Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst:effect of H2O removal from the reaction system, Appl. Catal. A:Gen. 237(2002) 103-109.

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    6. [6]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    7. [7]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    8. [8]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    9. [9]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    10. [10]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    11. [11]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    12. [12]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    13. [13]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    14. [14]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    15. [15]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    16. [16]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    17. [17]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    18. [18]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    19. [19]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    20. [20]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

Metrics
  • PDF Downloads(0)
  • Abstract views(633)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return