Citation: Yi-Xin Wang, Kai-Lou Zhao, Fan Yang, Lei Tian, Ying Yang, Quan Bai. Protein separation using a novel silica-based RPLC/IEC stationary phase modified with N-methylimidazolium ionic liquid[J]. Chinese Chemical Letters, ;2015, 26(8): 988-992. doi: 10.1016/j.cclet.2015.05.001 shu

Protein separation using a novel silica-based RPLC/IEC stationary phase modified with N-methylimidazolium ionic liquid

  • Corresponding author: Quan Bai, 
  • Received Date: 24 December 2014
    Available Online: 15 April 2015

    Fund Project: This work is supported by the National 863 Program (No. 2006AA02Z227) (No. 2006AA02Z227) Natural Science Foundation of Shaanxi Province (No. 2011JZ002) (No. 2011JZ002) the Foundation of Key Laboratory in Shaanxi Province (Nos. 2010JS103, 11JS097, 14JS098) (Nos. 2010JS103, 11JS097, 14JS098)

  • Ionic liquids (ILs) immobilized on silica as novel high performance liquid chromatography (HPLC) stationary phases have attracted considerable attention. However, it has not been applied to protein separation. In this paper, N-methylimidazolium IL-modified silica-based stationary phase (SilprMim) was prepared and investigated as a novel multi-interaction stationary phase charged positively for protein separation. The results indicate that all of the basic proteins tested cannot be absorbed on this novel stationary phase, whereas all of the acidic proteins tested can be retained, and the baseline separation of eight kinds of acidic protein standards can be achieved when performed in reversed phase/ ion-exchange chromatography (RPLC/IEC) mode. Compared with commonly used commercial octadecylated silica (ODS) column, the novel stationary phase can show selectivity and good resolution to acidic proteins, which has a promising application in the separation and analyses of acidic proteins from the complex samples in proteomics. In addition, the chromatographic behavior of proteins, the effect of the ligand structure and the retention mechanism on this stationary phase were also investigated.
  • 加载中
    1. [1]

      [1] O. Núñez, K. Nakanishi, N. Tanaka, Preparation of monolithic silica columns for high-performance liquid chromatography, J. Chromatogr. A 1191 (2008) 231-252.

    2. [2]

      [2] H.D. Qiu, X.J. Liang, M. Sun, S.X. Jiang, Development of silica-based stationary phases for high-performance liquid chromatography, Anal. Bioanal. Chem. 399 (2011) 3307-3322.

    3. [3]

      [3] J.J. Kirkland, J.J. DeStefano, The art and science of forming packed analytical highperformance liquid chromatography columns, J. Chromatogr. A 1126 (2006) 50-57.

    4. [4]

      [4] J.J. Kirkland, Development of some stationary phases for reversed-phase HPLC, J. Chromatogr. A 1060 (2004) 9-21.

    5. [5]

      [5] Y.Y. Li, S.Y. Cheng, P.C. Dai, X.M. Liang, Y.X. Ke, Large-pore monodispersed mesoporous silica spheres: synthesis and application in HPLC, Chem. Commun. 9 (2009) 1085-1087.

    6. [6]

      [6] T.L. Greaves, C.J. Drummond, Protic ionic liquids: properties and applications, Chem. Rev. 108 (2008) 206-237.

    7. [7]

      [7] X.H. Xiao, S.J. Liu, X. Liu, S.X. Jiang, Application of ionic liquid in analytical chemistry, Chin. J. Anal. Chem. 4 (2005) 569-574.

    8. [8]

      [8] Q.H. Cai, Y.W. Hou, S.Y. Shi, B. Lu, Y.K. Shan, A novel ionic liquid based on small size cation, Chin. Chem. Lett. 20 (2009) 62-65.

    9. [9]

      [9] V. Pino, A.M. Afonso, Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography -a review, Anal. Chim. Acta 714 (2012) 20-37.

    10. [10]

      [10] H.D. Qiu, S.X. Jiang, X. Liu, N-Methylimidazolium anion-exchange stationary phase for high-performance liquid chromatography, J. Chromatogr. A 1103 (2006) 265-270.

    11. [11]

      [11] H.D. Qiu, S.X. Jiang, X. Liu, L. Zhao, Novel imidazolium stationary phase for highperformance liquid chromatography, J. Chromatogr. A 1116 (2006) 46-50.

    12. [12]

      [12] T. Takeuchi, T. Kawasaki, L.W. Lim, Separation of inorganic anions on a pyridine stationary phase in ion chromatography, Anal. Sci. 26 (2010) 511-514.

    13. [13]

      [13] L.M.L.A. Auler, C.R. Silva, K.E. Collins, C.H. Collins, New stationary phase for anionexchange chromatography, J. Chromatogr. A 1073 (2005) 147-153.

    14. [14]

      [14] S.J. Liu, F. Zhou, X.H. Xiao, et al., Surface confined ionic liquid -a new stationary phase for the separation of ephedrines in high-performance liquid chromatography, Chin. Chem. Lett. 15 (2004) 1060-1062.

    15. [15]

      [15] H.D. Qiu, A.K. Mallik, M. Takafuji, H. Ihara, A facile and specific approach to new liquid chromatography adsorbents obtained by ionic self-assembly, Chem. Eur. J. 17 (2011) 7288-7297.

    16. [16]

      [16] H.D. Qiu, S.X. Jiang, M. Takafuji, H. Ihara, Polyanionic and polyzwitterionic azobenzene ionic liquid-functionalized silica materials and their chromatographic applications, Chem. Commun. 49 (2013) 2454-2456.

    17. [17]

      [17] Y.Q. Sun, A.M. Stalcup, Mobile phase effects on retention on a new butylimidazolium-based high-performance liquid chromatographic stationary phase, J. Chromatogr. A 1126 (2006) 276-282.

    18. [18]

      [18] A.J. Alpert, Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides, Anal. Chem. 80 (2008) 62-76.

    19. [19]

      [19] K.L. Zhao, L. Yang, X.J. Wang, et al., Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation, Talanta 98 (2012) 86-94.

  • 加载中
    1. [1]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    2. [2]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    3. [3]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    4. [4]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    5. [5]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    6. [6]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    7. [7]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    8. [8]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    9. [9]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    10. [10]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    11. [11]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    12. [12]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    13. [13]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    14. [14]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    15. [15]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    16. [16]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    17. [17]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    18. [18]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    19. [19]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    20. [20]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

Metrics
  • PDF Downloads(0)
  • Abstract views(654)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return