Citation: Dan-Ping Jiang, Cheng-Chun Zhu, Xu-Sheng Shao, Jia-Gao Cheng, Zhong Li. Bioactive conformation analysis of anthranilic diamide insecticides: DFT-based potential energy surface scanning and 3D-QSAR investigations[J]. Chinese Chemical Letters, ;2015, 26(6): 662-666. doi: 10.1016/j.cclet.2015.04.010 shu

Bioactive conformation analysis of anthranilic diamide insecticides: DFT-based potential energy surface scanning and 3D-QSAR investigations

  • Corresponding author: Jia-Gao Cheng, 
  • Received Date: 8 November 2014
    Available Online: 17 March 2015

    Fund Project: The authors thanks for the financial support from the National Key Technology R&D Program of China (No. 2011BAE06B05). (No. 2011BAE06B05)

  • Anthranilic diamides are fasting growing class insecticides in modern crop protection for their high activity, low ecotoxicity, and broad insecticidal spectra. However, the bioactive conformations of anthranilic diamides are still unclear until now. In the present study, DFT-based potential energy surface scanning was used to detect the low energy conformations of chlorantraniliprole, then were used respectively in the structure alignment for a series of anthranilic diamide compounds followed by detailed CoMFA and CoMSIA analyses. Finally, the bioactive conformations of anthranilic diamide insecticides were revealed from a series of low energy conformations, which might provide some clues for future insecticide design.
  • 加载中
    1. [1]

      [1] A. Jeanguenat, The story of a new insecticidal chemistry class: the diamides, Pest Manag. Sci. 69 (2013) 7-14.

    2. [2]

      [2] T. Masaki, N. Yasokawa, S. Fujioka, et al., Quantitative relationship between insecticidal activity and Ca2+ pump stimulation by flubendiamide and its related compounds, J. Pestic. Sci. 34 (2009) 37-42.

    3. [3]

      [3] M. Tohnishi, H. Nakao, T. Furuya, et al., Flubendiamide, a novel insecticide highly active against lepidopterous insect pests, J. Pestic. Sci 30 (2005) 354-360.

    4. [4]

      [4] A. Dinter, K.E. Brugger, N.M. Frost, M.D. Woodward, Chlorantraniliprole (Rynaxypyr): a novel DuPontTM insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terre stris) providing excellent tools for uses in integrated pest management, Julius-Kühn-Archiv 423 (2010) 84-96.

    5. [5]

      [5] D. Cordova, E.A. Benner, M.D. Sacher, et al., Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation, Pestic. Biochem. Physiol. 84 (2006) 196-214.

    6. [6]

      [6] D.B. Sattelle, D. Cordova, T.R. Cheek, Insect ryanodine receptors: molecular targets for novel pest control chemicals, Invert. Neurosci. 8 (2008) 107-119.

    7. [7]

      [7] Y.B. Chen, J.L. Li, X.S. Shao, X.Y. Xu, Z. Li, Design, synthesis and insecticidal activity of novel anthranilic diamides with benzyl sulfide scaffold, Chin. Chem. Lett. 24 (2013) 673-676.

    8. [8]

      [8] D.A. Clark, G.P. Lahm, B.K. Smith, J.D. Barry, D.G. Clagg, Synthesis of insecticidal fluorinated anthranilic diamides, Bioorg. Med. Chem. 16 (2008) 3163-3170.

    9. [9]

      [9] M. Luo, Q.C. Chen, J. Wang, et al., Novel chlorantraniliprole derivatives as potential insecticides and probe to chlorantraniliprole binding site on ryanodine receptor, Bioorg. Med. Chem. Lett. 24 (2014) 1987-1992.

    10. [10]

      [10] J.J. Ou, X.K. Zhu, L. Wang, et al., Synthesis and bioactivity study of 2-acylaminosubstituted N0-benzylbenzohydrazide derivatives, J. Agric. Food Chem. 60 (2012) 10942-10951.

    11. [11]

      [11] T.P. Selby, G.P. Lahm, T.M. Stevenson, et al., Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity, Bioorg. Med. Chem. Lett. 23 (2013) 6341-6345.

    12. [12]

      [12] B.L. Wang, H.W. Zhu, Y. Ma, et al., Synthesis, insecticidal activities, and SAR studies of novel pyridylpyrazole acid derivatives based on amide bridge modification of anthranilic diamide insecticides, J. Agric. Food Chem. 61 (2013) 5483-5493.

    13. [13]

      [13] J. Wu, B.A. Song, D.Y. Hu, M. Yue, S. Yang, Design, synthesis and insecticidal activities of novel pyrazole amides containing hydrazone substructures, Pest Manag. Sci. 68 (2012) 801-810.

    14. [14]

      [14] J.F. Zhang, J.Y. Xu, B.L. Wang, et al., Synthesis and insecticidal activities of novel anthranilic diamides containing acylthiourea and acylurea, J. Agric. Food Chem. 60 (2012) 7565-7572.

    15. [15]

      [15] Y.Y. Zhou, Q. Feng, F.J. Di, et al., Synthesis and insecticidal activities of 2,3-dihydroquinazolin-4(1H)-one derivatives targeting calcium channel, Bioorg. Med. Chem. 21 (2013) 4968-4975.

    16. [16]

      [16] A.K. Isaacs, S.Z. Qi, R. Sarpong, J.E. Casida, Insect ryanodine receptor: distinct but coupled insecticide binding sites for [N-C3H3]chlorantraniliprole, flubendiamide, and [3H]ryanodine, Chem. Res. Toxicol. 25 (2012) 1571-1573.

    17. [17]

      [17] G.P. Lahm, D. Cordova, J.D. Barry, New and selective ryanodine receptor activators for insect control, Bioorg. Med. Chem. 17 (2009) 4127-4133.

    18. [18]

      [18] S.Z. Qi, J.E. Casida, Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor, Pestic. Biochem. Physiol. 107 (2013) 321-326.

    19. [19]

      [19] S.R. LaPlante, H. Nar, C.T. Lemke, et al., Ligand bioactive conformation plays a critical role in the design of drugs that target the hepatitis C virus NS3 protease, J. Med. Chem. 57 (2014) 1777-1789.

    20. [20]

      [20] I.I. Serysheva, E.V. Orlova, W. Chiu, et al., Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel, Nat. Struct. Biol. 2 (1995) 18-24.

    21. [21]

      [21] M. Radermacher, V. Rao, R. Grassucci, et al., Cryo-electron microscopy and threedimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle, J. Cell Biol. 127 (1994) 411-423.

    22. [22]

      [22] L. Kimlicka, F. Van Petegem, The structural biology of ryanodine receptors, Sci. China Life Sci. 54 (2011) 712-724.

    23. [23]

      [23] F. Van Petegem, Ryanodine receptors: structure and function, J. Biol. Chem. 287 (2012) 31624-31632.

    24. [24]

      [24] L.N. Sun, L. Cui, C.H. Rui, et al., Modulation of the expression of ryanodine receptor mRNA from Plutella xylostella as a result of diamide insecticide application, Gene 511 (2012) 265-273.

    25. [25]

      [25] G.Y. Liu, X.L. Ju, J. Cheng, Z.Q. Liu, 3D-QSAR studies of insecticidal anthranilic diamides as ryanodine receptor activators using CoMFA, CoMSIA and DISCOtech, Chemosphere 78 (2010) 300-306.

    26. [26]

      [26] L. Zhang, G.F. Hao, Y. Tan, et al., Bioactive conformation analysis of cyclic imides as protoporphyrinogen oxidase inhibitor by combining DFT calculations, QSAR and molecular dynamic simulations, Bioorg. Med. Chem. 17 (2009) 4935-4942.

    27. [27]

      [27] J.W. Zou, C.C. Luo, H.X. Zhang, et al., Three-dimensional QSAR of HPPD inhibitors, PSA inhibitors, and anxiolytic agents: effect of tautomerism on the CoMFA models, J. Mol. Graph. Model. 26 (2007) 494-504.

    28. [28]

      [28] T.H. Li, X.G. Xie, G.B. Du, A theoretical study on the water-mediated asynchronous addition between urea and formaldehyde, Chin. Chem. Lett. 24 (2013) 85-88.

    29. [29]

      [29] A.A. Peyghan, M.T. Baei, S. Hashemian, M. Moghimi, Adsorption of nitrous oxide on the (6,0) magnesium oxide nanotube, Chin. Chem. Lett. 23 (2012) 1275-1278.

    30. [30]

      [30] S. Xia, Y. Feng, J.G. Cheng, et al., QAAR exploration on pesticides with high solubility: an investigation on sulfonylurea herbicide dimers formed through π-π stacking interactions, Chin. Chem. Lett. 25 (2014) 973-977.

    31. [31]

      [31] G.P. Lahm, T.M. Stevenson, T.P. Selby, et al., RynaxypyrTM: a new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator, Bioorg. Med. Chem. Lett. 17 (2007) 6274-6279.

    32. [32]

      [32] G.P. Lahm, T.P. Selby, J.H. Freudenberger, et al., Insecticidal anthranilic diamides: a new class of potent ryanodine receptor activators, Bioorg. Med. Chem. Lett. 15 (2005) 4898-4906.

  • 加载中
    1. [1]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    2. [2]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    3. [3]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    4. [4]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    5. [5]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    6. [6]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    7. [7]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    8. [8]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    11. [11]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    12. [12]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    13. [13]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    14. [14]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    15. [15]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    16. [16]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    17. [17]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    18. [18]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    19. [19]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    20. [20]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

Metrics
  • PDF Downloads(0)
  • Abstract views(588)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return