Citation: Yuan Tan, Israr Ahmad, Tian-Xin Wei. Detection of parathion methyl using a surface plasmon resonance sensor combined with molecularly imprinted films[J]. Chinese Chemical Letters, ;2015, 26(6): 797-800. doi: 10.1016/j.cclet.2015.04.001 shu

Detection of parathion methyl using a surface plasmon resonance sensor combined with molecularly imprinted films

  • Corresponding author: Tian-Xin Wei, 
  • Received Date: 8 November 2014
    Available Online: 19 March 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 20771015) (No. 20771015)the National "111" Project of China's Higher Education (No. B07012). (No. B07012)

  • An ultra-sensitive and highly selective parathion methyl (PM) detection method by surface plasmon resonance (SPR) combined with molecularly imprinted films (MIF) was developed. The PM-imprinted film was prepared by thermo initiated polymerization on the bare Au surface of an SPR sensor chip. Template PM molecules were quickly removed by an organic solution of acetonitrile/acetic acid (9:1, v/v), causing a shift of 0.5° in SPR angle. In the concentrations range of 10-13-10-10 mol/L, the refractive index showed a gradual increase with higher concentrations of template PM and the changes of SPR angles were linear with the negative logarithm of PM concentrations. In the experiment, the minimum detectable concentration was 10-13 mol/L. The selectivity of the thin PM-imprinted film against diuron, tetrachlorvinphose and fenitrothion was examined, but no observable binding was detected. The results in the experiment suggested that the MIF had the advantages of high sensitivity and selectivity.
  • 加载中
    1. [1]

      [1] C.P.Wei, H.Q. Zhou, J. Zhou, Ultrasensitively sensing acephate usingmolecular imprinting techniques on a surface plasmon resonance sensor, Talanta 83 (2011) 1422-1427.

    2. [2]

      [2] C.M. Torres, Y. Picó, J. Mañes, Determination of pesticide residues in fruit and vegetables, J. Chromatogr. A 754 (1996) 301-331.

    3. [3]

      [3] L. Pogačnik, M. Franko, Detection of organophosphate and carbamate pesticides in vegetable samples by a photothermal biosensor, Biosens. Bioelectron. 18 (2003) 1-9.

    4. [4]

      [4] A. Cappiello, G. Famiglini, P. Palma, F. Mangani, Trace level determination of organophosphorus pesticides in water with the new direct-electron ionization LC/MS interface, Anal. Chem. 74 (2002) 3547-3554.

    5. [5]

      [5] L. Chimuka, M. Van Pinxteren, J. Billing, E. Yilmaz, J.Å. Jönsson, Selective extraction of triazine herbicides based on a combination of membrane assisted solvent extraction and molecularly imprinted solid phase extraction, J. Chromatogr. A 1218 (2011) 647-653.

    6. [6]

      [6] D. Djozan, B. Ebrahimi, M. Mahkam, M.A. Farajzadeh, Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber, Anal. Chim. Acta 674 (2010) 40-48.

    7. [7]

      [7] L. Pallaroni, C. Von Holst, Determination of zearalenone from wheat and corn by pressurized liquid extraction and liquid chromatography-electrospray mass spectrometry, J. Chromatogr. A 993 (2003) 39-45.

    8. [8]

      [8] A.A. Ciucu, C. Negulescu, R.P. Baldwin, Determination of pesticides using an amperometric biosensor based on ferophthalocyanine chemically modified carbon paste electrode and immobilized bienzymatic system, Biosens. Bioelectron. 18 (2003) 303-310.

    9. [9]

      [9] Y.D. Zhang, S.B. Muench, H. Schulze, et al., Disposable biosensor test for organophosphate and carbamate insecticides in milk, J. Agric. Food Chem. 53 (2005) 5110-5115.

    10. [10]

      [10] Y.H. Qu, H. Min, Y.Y. Wei, et al., Au-TiO2/Chit modified sensor for electrochemical detection of trace organophosphates insecticides, Talanta 76 (2008) 758-762.

    11. [11]

      [11] Q.Q. Wei, T.X. Wei, A novel method to prepare SPR sensor chips based on photografting molecularly imprinted polymer, Chin. Chem. Lett. 22 (2011) 721-724.

    12. [12]

      [12] Y. Wang, T.X. Wei, Surface plasmon resonance sensor chips for the recognition of bovine serum albumin via electropolymerized molecularly imprinted polymers, Chin. Chem. Lett. 24 (2013) 813-816.

    13. [13]

      [13] J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev. 108 (2008) 462-493.

    14. [14]

      [14] M. Malmqvist, BIACORE: an affinity biosensor system for characterization of biomolecular interactions, Biochem. Soc. Trans. 27 (1999) 335-340.

    15. [15]

      [15] L.X. Zhang, J.Y. Liu, E.K. Wang, A new method for studying the interaction between chlorpromazine and phospholipid bilayer, Biochem. Biophys. Res. Commun. 373 (2008) 202-205.

    16. [16]

      [16] L. Quan, D.G. Wei, X.L. Jiang, et al., Resurveying the Tris buffer solution: the specific interaction between tris(hydroxymethyl)aminomethane and lysozyme, Anal. Biochem. 378 (2008) 144-150.

    17. [17]

      [17] C.F. Mandenius, R.H. Wang, A. Aldén, et al., Monitoring of influenza virus hemagglutinin in process samples using weak affinity ligands and surface plasmon resonance, Anal. Chim. Acta 623 (2008) 66-75.

    18. [18]

      [18] G. Hayashi, M. Hagihara, K. Nakatani, Genotyping by allele-specific L-DNA-tagged PCR, J. Biotechnol. 135 (2008) 157-160.

    19. [19]

      [19] F. Bonini, S. Piletsky, A.P.F. Turner, A. Speghini, A. Bossi, Surface imprinted beads for the recognition of human serum albumin, Biosens. Bioelectron. 22 (2007) 2322-2328.

    20. [20]

      [20] C. Esen,M. Andac, N. Bereli, et al., Highly selective ion-imprinted particles for solid-phase extraction of Pb2+ ions, Mater. Sci. Eng. C: Mater. 29 (2009) 2464-2470.

    21. [21]

      [21] Y. Saylan, M.M. Sari, S. Özkara, L. Uzun, A. Denizli, Hydrophobic microbeads as an alternative pseudo-affinity adsorbent for recombinant human interferon-alpha via hydrophobic interactions, Mater. Sci. Eng. C: Mater. 32 (2012) 937-944.

    22. [22]

      [22] S. Asliyuce, L. Uzun, R. Say, A. Denizli, Immunoglobulin G recognition with Fab fragments imprintedmonolithic cryogels: evaluation of the effects ofmetal-ion assisted-coordination of template molecule, React. Funct. Polym. 73 (2013) 813-820.

    23. [23]

      [23] G. Ertürk, L. Uzun, M.A. Tümer, R. Say, A. Denizli, Fab fragments imprinted SPRbiosensor for real-time human immunoglobulin G detection, Biosens. Bioelectron. 22 (2007) 2322-2328.

    24. [24]

      [24] H.X. Hao, H. Zhou, J. Chang, J. Zhu, T.X. Wei, Molecularly imprinted polymers for highly sensitive detection of morphine using surface plasmon resonance spectroscopy, Chin. Chem. Lett. 22 (2011) 477-480.

    25. [25]

      [25] V.K. Gupta, M.L. Yola, N.Özaltın, et al., Molecularimprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin, Electrochim. Acta 112 (2013) 37-43.

    26. [26]

      [26] M.L. Yola, L. Uzun, N. Özaltın, A. Denizli, Development of molecular imprinted nanosensor for determination of tobramycin in pharmaceuticals and foods, Talanta 120 (2014) 318-324.

    27. [27]

      [27] M.L. Yola, T. Eren, N. Atar, Molecular imprinted nanosensor based on surface plasmon resonance: application to the sensitive determination of amoxicillin, Sens. Actuators: B 195 (2014) 28-35.

    28. [28]

      [28] M. Frasconi, R. Tel-Vered, M. Riskin, I. Willner, Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites, Anal. Chem. 82 (2010) 2512-2519.

    29. [29]

      [29] B.M. Riskin, R. Tel-Vered, I. Willner, Imprinted Au-nanoparticle composites for the ultra-sensitive surface plasmon resonance detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), Adv. Mater. 22 (2010) 1387-1391.

    30. [30]

      [30] R.B. Pernites, R.R. Ponnapati, R.C. Advincula, Surface plasmon resonance (SPR) detection of theophylline via electropolymerized molecularly imprinted polythiophenes, Macromolecules 43 (2010) 9724-9735.

  • 加载中
    1. [1]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    2. [2]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    3. [3]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    4. [4]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    5. [5]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    6. [6]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    7. [7]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    8. [8]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    9. [9]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    10. [10]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    11. [11]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    12. [12]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    13. [13]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    14. [14]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    15. [15]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    16. [16]

      Yuxin XiaoXiaowei WangYutong YinFangchao YinJinchao LiZhiyuan HouMashooq KhanRusong ZhaoWenli WuQiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718

    17. [17]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    18. [18]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    19. [19]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    20. [20]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

Metrics
  • PDF Downloads(0)
  • Abstract views(635)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return