Citation: Juan-Juan Sun, Ying Han, Jing Sun, Chao-Guo Yan. Synthesis and crystal structure of Ni, Cu complexes of 5-methyl-10,10,15,15,20,20-hexaethylcalix[4]pyrrole mono-Schiff bases[J]. Chinese Chemical Letters, ;2015, 26(6): 685-689. doi: 10.1016/j.cclet.2015.03.028 shu

Synthesis and crystal structure of Ni, Cu complexes of 5-methyl-10,10,15,15,20,20-hexaethylcalix[4]pyrrole mono-Schiff bases

  • Corresponding author: Ying Han,  Chao-Guo Yan, 
  • Received Date: 20 November 2014
    Available Online: 17 March 2015

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (No. 21172190) (No. 21172190)

  • The functionalized calix[4]pyrrole meso-substituted Schiff bases were conveniently prepared by fourstep synthetic route. Furthermore, the nickel and copper complexes of calix[4]pyrrolemeso-substituted Schiff base with 1:2 stoichiometry were obtained. The crystal structures of the calix[4]pyrroles and their metal complexes were determined by X-ray diffraction.
  • 加载中
    1. [1]

      [1] P.A. Gale, P. Anzenbacher, J.L. Sessler, Calixpyrroles II, Coord. Chem. Rev. 222 (2001) 57-102.

    2. [2]

      [2] P.A. Gale, C.C. Tong, C.J.E. Haynes, et al., Octafluorocalix[4]pyrrole: a chloride/bicabonate antiport agent, Coord. Chem. Rev. 132 (2010) 3240-3241.

    3. [3]

      [3] P.A. Gale, S.E. García-Garrido, J. Garric, Anion receptors based on organic frameworks: highlights from 2005 and 2006, Chem. Soc. Rev. 37 (2008) 151-190.

    4. [4]

      [4] A.E. Hargrove, S. Nieto, T.Z. Zhang, J.L. Sessler, E.V. Anslyn, Artificial receptors for the recognition of phosphorylated molecules, Chem. Rev. 111 (2011) 6603-6782.

    5. [5]

      [5] T.G. Levitskaia, M. Marquez, J.L. Sessler, et al., Fluorinated calixpyrroles: anionbinding extractants that reduce the Hofmeister bias, Chem. Commun. 17 (2003) 2248-2249.

    6. [6]

      [6] B. Taner, Novel vic-dioxime ligand containing calix[4]pyrrole moiety: synthesis, characterization, anion binding studies and complexation with Ni(II), J. Incl. Phenom. Macrocycl. Chem. 79 (2014) 75-81.

    7. [7]

      [7] H. Miyaji, H.K. Kim, E.K. Sim, et al., Coumarin-strapped calix[4]pyrrole: a fluorogenic anion receptor modulated by cation and anion binding, J. Am. Chem. Soc. 127 (2005) 12510-12512.

    8. [8]

      [8] B. Taner, P. Deveci, S. Bereket, A.O. Solak, E. Özcan, The first example of calix[4]-pyrrole functionalized vic-dioxime ligand: synthesis, characterization, spectroscopic studies and redox properties of the mononuclear transition metal complexes, Inorg. Chim. Acta 363 (2010) 4017-4023.

    9. [9]

      [9] G. Cafeo, F.H. Kohnke, M.F. Parisi, et al., The elusive b-unsubstituted calix[5]pyrrole finally captured, Org. Lett. 4 (2002) 2695-2697.

    10. [10]

      [10] J.L. Sessler, D.Q. An, W.S. Cho, et al., Anion-binding behavior of hybrid calixpyrroles, J. Org. Chem. 70 (2005) 1511-1517.

    11. [11]

      [11] B. Mokhtari, K. Pourabdollah, Analytical applications of nano-baskets of calix[4]-pyrroles, J. Incl. Phenom. Macrocycl. Chem. 77 (2013) 23-31.

    12. [12]

      [12] K.D. Bhatt, D.J. Vyas, B.A. Makwana, S.M. Darjee, V.K. Jain, Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 121 (2014) 94-100.

    13. [13]

      [13] A. Aydogan, A. Akar, Tri-and pentacalix[4]pyrroles: synthesis, characterization and their use in the extraction of halide salts, Chem. Eur. J. 18 (2012) 1999-2005.

    14. [14]

      [14] G. Cafeo, G. Gattuso, F.H. Kohnke, et al., Host-guest chemistry of aromatic-amidelinked bis-and tris-calix[4]pyrroles with bis-carboxylates and citrate anion, Chem. Eur. J. 20 (2014) 1658-1668.

    15. [15]

      [15] J.L. Sessler, E. Tomat, Transition-metal complexes of expanded porphyrins, Acc. Chem. Res. 40 (2007) 371-379.

    16. [16]

      [16] Y. Matano, H. Imahori, Phosphole-containing calixpyrroles, calixphyrins, and porphyrins: synthesis and coordination chemistry, Acc. Chem. Res. 42 (2009) 1193-1204.

    17. [17]

      [17] J. Jubb, C. Floriani, A. Chiesi-Villa, C. Rizzoli, Redox chemistry of meso-octaethylporphyrinogen: formation and opening of a cyclopropane ring, J. Am. Chem. Soc. 114 (1992) 6571-6573.

    18. [18]

      [18] S. De Angelis, E. Solari, C. Floriani, A. Chiesi-Villa, C. Rizzoli, Oxidation of metalmeso-octaethylporphyrinogen complexes leading to novel oxidized forms of porphyrinogen other than porphyrins. 1. The redox chemistry of nickel(I1)-and copper (11)-meso-octaethylporphyrinogen complexes occurring with the formation and cleavage of a cyclopropane unit, J. Am. Chem. Soc. 116 (1994) 5691-5701.

    19. [19]

      [19] T. Nakabuchi, Y. Matano, H. Imahori, Synthesis, structures, and coordinating properties of phosphole-containing hybrid calixpyrroles, Organometallics 27 (2008) 3142-3152.

    20. [20]

      [20] V. Blangy, C. Heiss, V. Khlebnikov, et al., Synthesis, structure, and complexation properties of partially and completely reduced meso-octamethylporphyrinogens (calix[4]pyrroles), Angew. Chem. Int. Ed. 48 (2009) 1688-1691.

    21. [21]

      [21] G.B. Deacon, M.G. Gardiner, P.C. Junk, J.P. Townley, J. Wang, Rare-earth metalation of calix[4]pyrrole/calix[4]arene free of alkali-metal companions, Organometallics 31 (2012) 3857-3864.

    22. [22]

      [22] E. Askarizadeh, A.M.J. Devoille, D.M. Boghaei, A.M.Z. Slawin, J.B. Love, Ligand modifications for tailoring the binuclear microenvironments in Schiff-base calixpyrrole pacman complexes, Inorg. Chem. 48 (2009) 7491-7500.

    23. [23]

      [23] J.B. Love, A macrocyclic approach to transition metal and uranyl pacman complexes, Chem. Commun. (2009) 3154-3165.

    24. [24]

      [24] E. Askarizadeh, S.B. Yaghoo, D.M. Boghaei, A.M.Z. Slawinc, J.B. Love, Fluidization characteristics of printed circuit board plastic particles with different sizes, Chem. Commun. 46 (2010) 710-712.

    25. [25]

      [25] Q.J. Pan, G. Schreckenbach, P.L. Arnold, J.B. Love, Theoretical predictions of cofacial bis(actinyl) complexes of a stretched Schiff-base calixpyrrole ligand, Chem. Commun. 47 (2011) 5720-5722.

    26. [26]

      [26] B. Taner, P. Deveci, E. Özcan, A.O. Solak, A novel vic-dioxime ligand and its Ni(II), Cu(II) and Co(II) complexes containing calix[4]pyrrole moiety: synthesis, characterization and redox properties, J. Incl. Phenom. Macrocycl. Chem. 74 (2012) 391-396.

    27. [27]

      [27] G. Cafeo, G. Carbotti, A. Cuzzola, et al., Drug delivery with a calixpyrrole-trans-Pt(II) complex, J. Am. Chem. Soc. 135 (2013) 2544-2551.

    28. [28]

      [28] C.G. Yan, L. Li, W.L. Liu, Metallic macrocycle with a 1,3-alternate calix[4]arene salicylideneamine ligand, J. Coord. Chem. 62 (2009) 2118-2124.

    29. [29]

      [29] L. Liu, K. Huang, C.G. Yan, Syntheses, reactions and crystal structures of 1,3-alternate p-tert-butylthiacalix[4]arene esters and amides, J. Incl. Phenom. Macrocycl. Chem. 66 (2010) 349-355.

    30. [30]

      [30] J. Sun, L.L. Zhang, Y. Yao, C.G. Yan, Synthesis, crystal structures and complexing properties of tetramethoxyresorcinarene functionalized tetraacylhydrazones, J. Incl. Phenom. Macrocycl. Chem. 79 (2014) 485-494.

    31. [31]

      [31] Y. Han, G.L. Wang, J.J. Sun, J. Sun, C.G. Yan, Synthesis and crystal structure of 15α, 20α-di(4-hydroxylphenyl)calix[4]pyrroles and 10α,20β-di(4-hydroxylphenyl)-calix[4]pyrroles, Tetrahedron 69 (2013) 10604-10609.

    32. [32]

      [32] Y. Han, J.J. Sun, G.L. Wang, C.G. Yan, Synthesis and properties of functionalized schiff bases of 5α, 10α-di(4-hydroxylphenyl)calix[4]pyrrole and 5α,15β-di(4-hydroxylphenyl)calix[4]pyrrole, Chem. Res. Chin. Univ. 30 (2014) 919-924.

    33. [33]

      [33] Y. Han, J.J. Sun, G.L. Wang, C.G. Yan, Synthesis, crystal structure and complexing properties of calix[4]pyrrole 10a,20a-disubstituted Schiff bases and urea derivatives, J. Mol. Struct. 1083 (2015) 300-310.

    34. [34]

      [34] G.M. Sheldrick, SHELX9Z Structure Determination Programs, University of Göttingen, Göttingen, 1997.

  • 加载中
    1. [1]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    2. [2]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    5. [5]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    6. [6]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    7. [7]

      Yuyang ZhouZiwang MaoJing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622

    8. [8]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    9. [9]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    10. [10]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    11. [11]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    12. [12]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    13. [13]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    14. [14]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    15. [15]

      Yu XiaYangming JiangXin-Long NiQiaochun WangDaoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782

    16. [16]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    17. [17]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    18. [18]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    19. [19]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    20. [20]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

Metrics
  • PDF Downloads(0)
  • Abstract views(624)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return