Citation: Xiao-Xiao Liu, Yuan Wang, Wan-Guo Tian, Weiting Yang, Zhong-Ming Sun. Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands[J]. Chinese Chemical Letters, ;2015, 26(6): 641-645. doi: 10.1016/j.cclet.2015.03.024 shu

Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands

  • Corresponding author: Yuan Wang,  Zhong-Ming Sun, 
  • Received Date: 21 January 2015
    Available Online: 11 March 2015

    Fund Project:

  • Two heterometallic uranium oxyfluorides with hybrid networks were hydrothermally synthesized by incorporating two imidazoles, 1-(biphenyl-4-yl)-1H-imidazole (bpi) and 1,4-di(1H-imidazol-1-yl)benzene (dib), formulated as Zn(bpi)2(UO2)2(H2O)F6 (1) and Zn(dib)(UO2)F4·0.5H2O (2). Compound 1 consists of chains of edge-sharing UO2F5 and UO2F4(H2O) pentagonal bipyramids, which are linked by Zn(bpi)2 moieties to form the sheet structure with decorated bpi. While in compound 2, sheets of edgesharing dimers of UO2F5 pentagonal bipyramids and ZnF3N2 polyhedra are linked by dib, creating a pillared three-dimensional framework. The two compounds represent the few examples of heterometallic uranium oxyfluorides incorporating organic ligands. The syntheses, structure as well as the IR spectra, UV-vis spectra and luminescent properties of the bimetallic uranium oxyfluorides are studied.
  • 加载中
    1. [1]

      [1] W. Wang, Y. Yuan, F.X. Sun, G.S. Zhu, Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2, Chin. Chem. Lett. 25 (2014) 1407-1410.

    2. [2]

      [2] Z.Y. Du, T.T. Xu, B. Huang, et al., Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials, Angew. Chem. Int. Ed. 54 (2015) 914-918.

    3. [3]

      [3] Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25 (2014) 823-828.

    4. [4]

      [4] Y. Peng, V. Krungleviciute, I. Eryazici, et al., Methane storage in metal-organic frameworks: current records, surprise findings, and challenges, J. Am. Chem. Soc. 135 (2013) 11887-11894.

    5. [5]

      [5] T. Zheng, M. Ren, S.S. Bao, L.M. Zheng, M2(pbtcH)(phen)2(H2O)2 [M(II)≡Co, Ni]: mixed-ligated metal phosphonates based on 5-phosphonatophenyl-1,2,4-tricarboxylic acid showing double chain structures, Chin. Chem. Lett. 25 (2014) 835-838.

    6. [6]

      [6] M.B. Andrews, C.L. Cahill, Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures, Chem. Rev. 113 (2013) 1121-1136.

    7. [7]

      [7] T. Loiseau, I. Mihalcea, N. Henry, C. Volkringer, The crystal chemistry of uranium carboxylates, Coord. Chem. Rev. 266-267 (2014) 69-109.

    8. [8]

      [8] K.X. Wang, J.S. Chen, Extended structures and physicochemical properties of uranyl-organic compounds, Acc. Chem. Res. 44 (2011) 531-540.

    9. [9]

      [9] J. Qiu, P.C. Burns, Clusters of actinides with oxide, peroxide, or hydroxide bridges, Chem. Rev. 113 (2013) 1097-1120.

    10. [10]

      [10] (a) Z.T. Yu, Z.L. Liao, Y.S. Jiang, et al., Construction of a microporous inorganic-organic hybrid compound with uranyl units, Chem. Commun. (2004) 1814-1815; (b) W. Chen, H.M. Yuan, J.Y. Wang, et al., Synthesis, structure, and photoelectronic effects of a uranium-zinc-organic coordination polymer containing infinite metal oxide sheets, J. Am. Chem. Soc. 125 (2003) 9266-9267.

    11. [11]

      [11] (a) J. Olchowka, C. Falaise, C. Volkringer, N. Henry, T. Loiseau, Structural observations of heterometallic uranyl copper(II) carboxylates and their solid-state topotactic transformation upon dehydration, Chem. Eur. J. 19 (2013) 2012-2022; (b) C. Volkringer, N. Henry, S. Grandjean, T. Loiseau, Uranyl and/or rare-earth mellitates in extended organic-inorganic networks: a unique case of heterometallic cation-cation interaction with UVI = O-LnIII Bonding (Ln = Ce, Nd), J. Am. Chem. Soc. 134 (2012) 1275-1283; (c) J. Olchowka, C. Volkringer, N. Henry, T. Loiseau, Synthesis, structural characterization, and dehydration analysis of uranyl zinc mellitate, (UO2)Zn(H2O)4(H2-mel)·2H2O, Eur. J. Inorg. Chem. 2013 (2013) 2109-2114.

    12. [12]

      [12] (a) P. Thuéry, Molecular and polymeric uranyl and thorium complexes with sulfonate-containing ligands, Eur. J. Inorg. Chem. 2014 (2014) 58-68; (b) P. Thuéry, Sulfonate complexes of actinide ions: structural diversity in uranyl complexes with 2-sulfobenzoate, Inorg. Chem. 52 (2013) 435-447.

    13. [13]

      [13] (a) P.M. Cantos, L.J. Jouffret, R.E. Wilson, P.C. Burns, C.L. Cahill, Series of uranyl-4,4'-biphenyldicarboxylates and an occurrence of a cation-cation interaction: hydrothermal synthesis and in situ Raman studies, Inorg. Chem. 52 (2013) 9487-9495; (b) K.E. Knope, D.T. de Lill, C.E. Rowland, et al., Uranyl sensitization of samarium(III) luminescence in a two-dimensional coordination polymer, Inorg. Chem. 51 (2012) 201-206.

    14. [14]

      [14] (a) T. Tian, W.T. Yang, H. Wang, et al., Syntheses and structures of uranyl ethylenediphosphonates: from layers to elliptical nanochannels, Inorg. Chem. 52 (2013) 7100-7106; (b) T. Tian, W.T. Yang, H. Wang, S. Dang, Z.M. Sun, Flexible diphosphonic acids for the isolation of uranyl hybrids with heterometallic UVI≡O-ZnII cation-cation interactions, Inorg. Chem. 52 (2013) 8288-8290.

    15. [15]

      [15] (a) D.W. Juan, T.E. Albrecht-Schmitt, Chiral uranium phosphonates constructed from achiral units with three-dimensional frameworks, Chem. Commun. 48 (2012) 3827-3829; (b) P.O. Adelani, T.E. Albrecht-Schmitt, Differential ion exchange in elliptical uranyl diphosphonate nanotubules, Angew. Chem. Int. Ed. 49 (2010) 8909-8911; (c) A.G.D. Nelson, E.V. Alekseev, R.C. Ewing, T.E. Albrecht-Schmitt, Barium uranyl diphosphonates, J. Solid State Chem. 192 (2012) 153-160.

    16. [16]

      [16] (a) M.B. Doran, B.E. Cockbain, A.J. Norquist, D. O'Hare, The effects of hydrofluoric acid addition on the hydrothermal synthesis of templated uranium sulfates, Dalton Trans. (2004) 3810-3814; (b) K. Min Ok, M.B. Doran, D. O'Hare, [(CH3)2NH(CH2)2NH(CH3)2][(UO2)2 F2(HPO4)2]: a new organically templated layered uranium phosphate fluoride -synthesis, structure, characterization, and ion-exchange reactions, Dalton Trans. (2007) 3325-3329; (c) K. Min Ok, D. O'Hare, Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride,[N(C2H5)4]2[(UO2)4(OH2)3F10], J. Solid State Chem. 180 (2007) 446-452.

    17. [17]

      [17] (a) C.S. Lee, C.H. Lin, S.L. Wang, K.H. Lii, [Na7UVIO2(UVO)2(UV/VIO2)2Si4O16]: a mixed-valence uranium silicate, Angew. Chem. Int. Ed. 49 (2010) 4254-4256; (b) Q.B. Nguyen, H.K. Liu, W.J. Chang, K.H. Lii, Cs8UVI(UVIO2)3(Ge3O9)3·3H2O: a mixed-valence uranium germanate with 9-ring channels, Inorg. Chem. 50 (2011) 4241-4243.

    18. [18]

      [18] P.S. Halasyamani, S.M. Walker, D. O'Hare, The first open framework actinide material (C4N2H12)U2O4F6 (MUF-1), J. Am. Chem. Soc. 121 (1999) 7415-7416.

    19. [19]

      [19] K. Min Ok, M.B. Doran, D. O'Hare, [N(CH3)4][(UO2)2F5]: a new organically templated open-framework uranium oxide fluoride (MUF-2), J. Mater. Chem. 16 (2006) 3366-3368.

    20. [20]

      [20] C.M. Wang, C.H. Liao, H.M. Kao, K.H. Lii, Hydrothermal synthesis and characterization of (UO2)2F8(H2O)2Zn2(4,4'-bpy)2·(4,4'-bpy), a mixed-metal uranyl aquofluoride with a pillared layer structure, Inorg. Chem. 44 (2005) 6294-6298.

    21. [21]

      [21] (a) W.T. Yang, F.Y. Yi, T. Tian, W.G. Tian, S.Z. Sun, Structural variation within heterometallic uranyl hybrids based on flexible alkyldiphosphonate ligands, Cryst. Growth Des. 14 (2014) 1366-1374; (b) W.T. Yang, S. Dang, H. Wang, et al., Synthesis, structures, and properties of uranyl hybrids constructed by a variety of mono-and polycarboxylic acids, Inorg. Chem. 52 (2013) 12394-12402.

    22. [22]

      [22] S.V. Matthew, H.W. Timothy, S-nitrosothiol and nitric oxide reactivity at zinc thiolates, Inorg. Chem. 48 (2009) 5605-5607.

    23. [23]

      [23] A.M.S. Obbade, M. Rivenet, C. Renard, F. Abraham, [La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology, J. Solid State Chem. 185 (2012) 180-186.

    24. [24]

      [24] T.G. Parker, J.N. Cross, M.J. Polinski, J. Lin, T.E. Albrecht-Schmitt, Ionothermal and hydrothermal flux syntheses of five new uranyl phosphonates, Cryst. Growth Des. 14 (2014) 228-235.

    25. [25]

      [25] P.O. Adelani, T.E. Albrecht-Schmitt, Syntheses of uranyl diphosphonate compounds using encapsulated cations as structure directing agents, Cryst. Growth Des. 11 (2011) 4227-4237.

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    3. [3]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    4. [4]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    5. [5]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    6. [6]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    7. [7]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    8. [8]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    9. [9]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    10. [10]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    11. [11]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    12. [12]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    13. [13]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    16. [16]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    20. [20]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

Metrics
  • PDF Downloads(0)
  • Abstract views(654)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return