Citation: Feng-Ming Lin, E. Neil G. Marsh, Xiaoxia Nina Lin. Recent progress in hydrocarbon biofuel synthesis: Pathways and enzymes[J]. Chinese Chemical Letters, ;2015, 26(4): 431-434. doi: 10.1016/j.cclet.2015.03.018 shu

Recent progress in hydrocarbon biofuel synthesis: Pathways and enzymes

  • Corresponding author: Feng-Ming Lin, 
  • Received Date: 12 January 2015
    Available Online: 28 February 2015

  • Biofuels derived from hydrocarbon biosynthetic pathways have attracted increasing attention. Routes to hydrocarbon biofuels are emerging and mainly fall into two categories based on the metabolic pathways utilized: Fatty acid pathway-based alkanes/alkenes and isoprenoid biosynthetic pathway based terpenes. The primary focus of this review is on recent progress in the application of hydrocarbon biosynthetic pathways for hydrocarbon biofuel production, together with studies on enzymes, including efforts to engineering them for improved performance.
  • 加载中
    1. [1]

      [1] A. Bernard, J. Joubès, Arabidopsis cuticular waxes: advances in synthesis, export and regulation, Prog. Lipid. Res. 52 (2013) 110-29.

    2. [2]

      [2] T.M. Cheesbrough, P.E. Kolattukudy, Microsomal preparation from an animal tissue catalyzes release of carbon monoxide from a fatty aldehyde to generate an alkane, J. Biol. Chem. 263 (1988) 2738-743.

    3. [3]

      [3] R.W. Howard, G.J. Blomquist, Ecological, behavioral, and biochemical aspects of insect hydrocarbons, Annu. Rev. Entomol. 50 (2005) 371-93.

    4. [4]

      [4] M.W. Dennis, P.E. Kolattukudy, Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from botryococcus braunii, Arch. Biochem. Biophys. 287 (1991) 268-75.

    5. [5]

      [5] A. Schirmer, M.A. Rude, X. Li, et al., Microbial biosynthesis of alkanes, Science 329 (2010) 559-62.

    6. [6]

      [6] M.K. Akhtar, N.J. Turner, P.R. Jones, Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 87-2.

    7. [7]

      [7] M.A. Rude, T.S. Baron, S. Brubaker, et al., Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species, Appl. Environ. Microbiol. 77 (2011) 1718-727.

    8. [8]

      [8] D. Mendez-Perez, M.B. Begemann, B.F. Pfleger, Modular synthase-encoding gene involved in a-olefin biosynthesis in Synechococcus sp. Strain pcc 7002, Appl. Environ. Microbiol. 77 (2011) 4264-267.

    9. [9]

      [9] D. Mendez-Perez, S. Gunasekaran, V.J. Orler, et al., A translation-coupling DNA cassette for monitoring protein translation in Escherichia coli, Metab. Eng. 14 (2012) 298-05.

    10. [10]

      [10] H.R. Beller, E.-B. Goh, J.D. Keasling, Genes involved in long-chain alkene biosynthesis in Micrococcus luteus, Appl. Environ. Microbiol. 76 (2010) 1212-223.

    11. [11]

      [11] D. Das, B.E. Eser, J. Han, et al., Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes, Angew. Chem. Int. Ed. 50 (2011) 7148-152.

    12. [12]

      [12] N. Li, H. N鴕gaard, D.M. Warui, et al., Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase, J. Am. Chem. Soc. 133 (2011) 6158-161.

    13. [13]

      [13] E.N.G. Marsh, M.W. Waugh, Aldehyde decarbonylases: enigmatic enzymes of hydrocarbon biosynthesis, ACS Catal. 3 (2013) 2515-521.

    14. [14]

      [14] C. Andre, S.W. Kim, X.-H. Yu, et al., Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 3191-196.

    15. [15]

      [15] F. Lin, D. Das, X.N. Lin, et al., Aldehyde-forming fatty acyl-CoA reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme, FEBS J. 280 (2013) 4773-781.

    16. [16]

      [16] A. He, T. Li, L. Daniels, et al., Nocardia sp. carboxylic acid reductase: cloning, expression, and characterization of a new aldehyde oxidoreductase family, Appl. Environ. Microb. 70 (2004) 1874-881.

    17. [17]

      [17] P. Venkitasubramanian, L. Daniels, J.P.N. Rosazza, Reduction of carboxylic acids by Nocardia aldehyde oxidoreductase requires a phosphopantetheinylated enzyme, J. Biol. Chem. 282 (2007) 478-85.

    18. [18]

      [18] Y. Liu, C. Wang, J. Yan, et al., Hydrogen peroxide-independent production of alphaalkenes by OleTJE p450 fatty acid decarboxylase, Biotechnol. Biofuels 7 (2014) 28.

    19. [19]

      [19] J. Belcher, K.J. Mclean, S. Matthews, et al., Structure and biochemical properties of the alkene producing cytochrome p450 OleTJE (cyp152l1) from the Jeotgalicoccus sp. 8456 bacterium, J. Biol. Chem. 289 (2014) 6535-550.

    20. [20]

      [20] J.G. Mccarthy, E.B. Eisman, S. Kulkarni, et al., Structural basis of functional group activation by sulfotransferases in complex metabolic pathways, ACS Chem. Biol. 7 (2012) 1994-003.

    21. [21]

      [21] D.J. Sukovich, J.L. Seffernick, J.E. Richman, et al., Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of olea, Appl. Environ. Microbiol. 76 (2010) 3850-862.

    22. [22]

      [22] B.G. Harvey, M.E. Wright, R.L. Quintana, High-density renewable fuels based on the selective dimerization of pinenes, Energy Fuels 24 (2009) 267-73.

    23. [23]

      [23] G. Bokinsky, P.P. Peralta-Yahya, A. George, et al., Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 19949-9954.

    24. [24]

      [24] J. Yang, Q. Nie, M. Ren, et al., Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene, Biotechnol. Biofuels 6 (2013) 60.

    25. [25]

      [25] S. Sarria, B. Wong, H.G. Martn, et al., Microbial synthesis of pinene, ACS Synth. Biol. 3 (2014) 466-75.

    26. [26]

      [26] J. Alonso-Gutierrez, R. Chan, T.S. Batth, et al., Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production, Metab. Eng. 19 (2013) 33-1.

    27. [27]

      [27] P.P. Peralta-Yahya, M. Ouellet, R. Chan, et al., Identification and microbial production of a terpene-based advanced biofuel, Nat. Commun. 2 (2011) 483.

    28. [28]

      [28] N. Renninger, D. Mcphee, Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same, Patent US7846222 B2.

    29. [29]

      [29] J. Bohlmann, C.L. Steele, R. Croteau, Monoterpene synthases from Grand fir (Abies grandis): cDNA isolation, characterization, and functional expression of myrcene synthase, ( )-(4s)-limonene synthase, and ( )-(1s, 5s)-pinene synthase, J. Biol. Chem. 272 (1997) 21784-1792.

    30. [30]

      [30] D.B. Little, R.B. Croteau, Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases d-selinene synthase and g-humulene synthase, Arch. Biochem. Biophys. 402 (2002) 120-35.

    31. [31]

      [31] T.J. Savage, M.W. Hatch, R. Croteau, Monoterpene synthases of pinus contorta and related conifers.Anewclass of terpenoidcyclase, J.Biol.Chem. 269(1994) 4012-020.

    32. [32]

      [32] C.A. Lesburg, G. Zhai, D.E. Cane, et al., Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology, Science 277 (1997) 1820-824.

    33. [33]

      [33] C.M. Starks, K. Back, J. Chappell, et al., Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase, Science 277 (1997) 1815-820.

    34. [34]

      [34] J.M. Caruthers, I. Kang, M.J. Rynkiewicz, et al., Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti, J. Biol. Chem. 275 (2000) 25533-5539.

    35. [35]

      [35] M.J. Rynkiewicz, D.E. Cane, D.W. Christianson, Structure of trichodiene synthase from fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 13543-3548.

    36. [36]

      [36] C.L. Steele, J. Crock, J. Bohlmann, et al., Sesquiterpene synthases from Grand fir (Abies grandis): comparison of constitutive and wound-induced activities, and cdna isolation, characterization, and bacterial expression of d-selinene synthase and g-humulene synthase, J. Biol. Chem. 273 (1998) 2078-089.

    37. [37]

      [37] Y. Yoshikuni, T.E. Ferrin, J.D. Keasling, Designed divergent evolution of enzyme function, Nature 440 (2006) 1078-082.

  • 加载中
    1. [1]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    2. [2]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    3. [3]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    4. [4]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    5. [5]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    6. [6]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    7. [7]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    8. [8]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    9. [9]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    10. [10]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    11. [11]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    12. [12]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    13. [13]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    14. [14]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    15. [15]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    16. [16]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    17. [17]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    18. [18]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    19. [19]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    20. [20]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

Metrics
  • PDF Downloads(0)
  • Abstract views(486)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return