Citation: Gholamhossein Grivani, Abbase Ghavami, Válav Eigner, Michal Dušek, Aliakbar Dehno Khalaji. A new oxidovanadium(IV) Schiff base complex containing asymmetric tetradentate ONN'O' Schiff base ligand: Synthesis, characterization, crystal structure determination, thermal study and catalytic activity[J]. Chinese Chemical Letters, ;2015, 26(6): 779-784. doi: 10.1016/j.cclet.2015.03.014 shu

A new oxidovanadium(IV) Schiff base complex containing asymmetric tetradentate ONN'O' Schiff base ligand: Synthesis, characterization, crystal structure determination, thermal study and catalytic activity

  • Corresponding author: Gholamhossein Grivani, 
  • Received Date: 19 October 2014
    Available Online: 9 February 2015

  • After synthesis of an asymmetric tetradentate ONN'O' Schiff base ligand (H2L) followed by reaction of the synthesized H2L with an equimolar mixture of methanolic solutions of the VO(acac)2, a new oxidovanadium(IV) Schiff base complex (VOL) was synthesized. The Schiff base ligand and its complex were characterized by FT-IR and UV-vis spectra and C, H, N analysis. The crystal structure of VOL was also determined by single crystal X-ray analysis. The VOL complex crystallizes in monoclinic space group Cc. The Schiff base ligand acts as a tetradentate ligand through its two iminic nitrogens and two phenolic and acetylacetonate oxygens. Thermogravimetric analysis of the VOL showed that it decomposes in two steps and converts to mixed vanadium oxides at 477℃. In addition, thermal decomposition of the VOL complex in air at 660℃ leads to formation of V2O5 nanoparticles with the average size estimated from XRD 49 nm. The catalytic activity of the VOL complex was investigated in the epoxidation reaction and different reaction parameters were optimized. The results showed that the cyclic alkenes were efficiently converted to the corresponding epoxides, whereas the VOL did not appreciably convert the linear alkenes.
  • 加载中
    1. [1]

      [1] M. Shebl, Synthesis and spectroscopic studies of binuclear metal complexes of a tetradentate N2O2 Schiff base ligand derived from 4 6-diacetylresorcinol and benzylamine, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 70 (2008) 850-859.

    2. [2]

      [2] M. Hobady, T.D. Smith, N,N'-ethylenebis(salicylideneiminato) transition metal ion chelates, Coord. Chem. Rev. 9 (1973) 311-337.

    3. [3]

      [3] D.N. Dhar, C.L. Taploo, Schiff bases and their applications, J. Sci. Ind. Res. 41 (1982) 501-506.

    4. [4]

      [4] P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski, F. Bartl, Biological properties of Schiff bases and azo derivatives of phenols, Curr. Org. Chem. 13 (2009) 124-148.

    5. [5]

      [5] A.A. Khandar, S.A. Hosseini-Yazdi, S.A. Zarei, Synthesis, characterization and X-ray crystal structures of copper(II) and nickel(II) complexes with potentially hexadentate Schiff base ligands, Inorg. Chim. Acta 358 (2005) 3211-3217.

    6. [6]

      [6] P.K. Mascharak, Structural and functional models of nitrile hydratase, Coord. Chem. Rev. 225 (2002) 201-214.

    7. [7]

      [7] J.G. Muller, L.A. Kayser, S.J. Paikoff, et al., Formation of DNA adducts using nickel(II) complexes of redox-active ligands: a comparison of salen and peptide complexes, Coord. Chem. Rev. 185-186 (1999) 761-774.

    8. [8]

      [8] D.P. Kessissoglou, Homo-and mixed-valence EPR-active trinuclear manganese complexes, Coord. Chem. Rev. 185 (1999) 837-858.

    9. [9]

      [9] J.W. Pyrz, A.L. Roe, L.J. Stern, L. Que, Model studies of iron-tyrosinate proteins, J. Am. Chem. Soc. 107 (1985) 614-620.

    10. [10]

      [10] V.E. Kaasjager, L. Puglisi, E. Bouwman, W.L. Driessen, J. Reedijk, Synthesis, characterization and crystal structures of nickel complexes with dissymmetric tetradentate ligands containing a mixed-donor sphere, Inorg. Chim. Acta 310 (2000) 183-190.

    11. [11]

      [11] A.S. Al-Shihri, Synthesis, characterization and thermal analysis of some new transition metal complexes of a polydentate Schiff base, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 60 (2004) 1189-1192.

    12. [12]

      [12] A. Butler, J.V. Walker, Marine haloperoxidases, Chem. Rev. 93 (1993) 1937-1944.

    13. [13]

      [13] M. Andersson, A. Willetts, S. Allenmark, Asymmetric sulfoxidation catalyzed by a vanadium-containing bromoperoxidase, J. Org. Chem. 62 (1997) 8455-8458.

    14. [14]

      [14] H.B. ten Brink, H.E. Schoemaker, R. Wever, Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllumnodosum: evidence for direct oxygen transfer catalysis, Eur. J. Biochem. 268 (2001) 132-138.

    15. [15]

      [15] V. Trevisan, M. Signoretto, S. Colonna, V. Pironti, G. Strukul, Microencapsulated chloroperoxidase as a recyclable catalyst for the enantioselective oxidation of sulfides with hydrogen peroxid, Angew. Chem. Int. Ed. 43 (2004) 4097-4099.

    16. [16]

      [16] C.R. Cornman, E.P. Zovinka, M.H. Meixner, Vanadium(IV) complexes of an active-site peptide of a protein tyrosine phosphatase, Inorg. Chem. 34 (1995) 5099-5100.

    17. [17]

      [17] P. Noblía, M. Vieites, B.S. Parajón-Costa, et al., Vanadium(V) complexes with salicylaldehyde semicarbazone derivatives bearing in vitro anti-tumor activity toward kidney tumor cells (TK-10): crystal structure of [VVO2(5-bromosalicylaldehyde semicarbazone)], J. Inorg. Biochem. 99 (2005) 443-451.

    18. [18]

      [18] Y. Shechter, I. Goldwaser, M. Mironchik, M. Fridkin, D. Gefel, Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes, Coord. Chem. Rev. 237 (2003) 3-11.

    19. [19]

      [19] A.M.B. Bastos, J.G. da Silva, P.I.S. Maia, et al., Oxovanadium(IV) and (V) complexes of acetylpyridine-derived semicarbazones exhibit insulin-like activity, Polyhedron 27 (2008) 1787-1794.

    20. [20]

      [20] R.R. Eady, Current status of structure function relationships of vanadium nitrogenase, Coord. Chem. Rev. 237 (2003) 23-30.

    21. [21]

      [21] J.A.L. da Silva, J.J.R. Fraústoda Silva, A.J.L. Pombeiro, Oxovanadium complexes in catalytic oxidations, Coord. Chem. Rev. 255 (2011) 2232-2248.

    22. [22]

      [22] G. Licini, V. Conte, A. Coletti, M. Mba, C. Zonta, Recent advances in vanadium catalyzed oxygen transfer reactions, Coord. Chem. Rev. 255 (2011) 2345-2357.

    23. [23]

      [23] V. Conte, F. Di Furia, G. Licini, Liquid phase oxidation reactions by peroxides in the presence of vanadium complexes, Appl. Catal. A: Gen. 157 (1997) 335-361.

    24. [24]

      [24] S. Mohebbi, D.M. Boghaei, A.H. Sarvestani, Oxovanadium(IV) complexes as homogeneous catalyst—aerobic epoxidation of olefins, Appl. Catal. A: Gen. 278 (2005) 263-267.

    25. [25]

      [25] W. Zhang, A. Basak, Y. Kosugi, Y. Hoshino, H. Yamamoto, Enantioselective epoxidation of allylic alcohols by a chiral complex of vanadium: an effective controller system and a rational mechanistic model, Angew. Chem. Int. Ed. Engl. 44 (2005) 4389-4391.

    26. [26]

      [26] J.H. Hwang, M. Abu-Omar, New vanadium oxazoline catalysts for epoxidation of allylic alcohols, Tetrahedron Lett. 40 (1999) 8313-8316.

    27. [27]

      [27] M. Bagherzadeh, M. Amini, A new vanadium Schiff base complex as catalyst for oxidation of alcohols, J. Coord. Chem. 63 (2010) 3849-3858.

    28. [28]

      [28] E. Battistel, R. Tassinari, M. Fornaroli, L. Bonoldi, Oxidation of benzene by molecular oxygen catalysed by vanadium, J. Mol. Catal. A: Chem. 202 (2003) 107-115.

    29. [29]

      [29] G.B. Shul'pin, G. Süss-Fink, Oxidations by the reagent ‘H2O2-vanadium complex-pyrazine-2-carboxylic acid'. Part 4. Oxidation of alkanes, benzene and alcohols by an adduct of H2O2 with urea, J. Chem. Soc., Perkin Trans. 2 (1995) 1459-1463.

    30. [30]

      [30] A. Barbarini, R. Maggi, M. Muratori, G. Sartori, R. Sartorio, Enantioselectivesulfoxidation catalyzed by polymer-supported chiral Schiff base-VO(acac)2 complexes, Tetrahedron: Asymmetry 15 (2004) 2467-2473.

    31. [31]

      [31] T.S. Smith II., V.L. Pecoraro, Oxidation of organic sulfides by vanadium haloperoxidase model complexes, Inorg. Chem. 41 (2002) 6754-6760.

    32. [32]

      [32] R. Ando, H. Ono, T. Yagyu, M. Maeda, Characterization of oxovanadium(IV)-Schiffbase complexes and those bound on resin, and their use in sulfide oxidation, Inorg. Chim. Acta. 357 (2004) 2237-2244.

    33. [33]

      [33] A. Biswas, M. Drew, A. Ghosh, Nickel(II) and copper(II) complexes of unsymmetrical tetradentate reduced Schiff base ligands, Polyhedron 29 (2010) 1029-1034.

    34. [34]

      [34] L. Palatinus, G. Chapuis, SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, J. Appl. Crystallogr. 40 (2007) 786-790.

    35. [35]

      [35] V. Petříček, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features, Zeitschriftfür Kristallographie 229 (2014) 345-352.

    36. [36]

      [36] L.J. Farrugia, ORTEP-3 for Windows-a version of ORTEP-III with a graphical user interface (GUI), J. Appl. Crystallogr. 30 (1997) 565.

    37. [37]

      [37] R. Ando, S. Mori, M. Hayashi, T. Yagyu, M. Maeda, Structural characterization of pentadentatesalen-type Schiff-base complexes of oxovanadium(IV) and their use in sulfide oxidation, Inorg. Chim. Acta 357 (2004) 1177-1184.

    38. [38]

      [38] C.J. Chang, J.A. Labinger, H.B. Gray, Aerobic epoxidation of olefins catalyzed by electronegative vanadyl salen complexes, Inorg. Chem. 36 (1997) 5927-5930.

    39. [39]

      [39] J. Rahchamani, M. Behzad, A. Bezadpour, et al., Oxidovanadium complexes with tetradentate Schiff bases: synthesis, structural, electrochemical and catalytic studies, Polyhedron 30 (2011) 2611-2618.

    40. [40]

      [40] S. Rayati, M. Koliaei, F. Ashouri, et al., Oxovanadium(IV) Schiff base complexes derived from 2 2'-dimethylpropandiamine: a homogeneous catalyst for cyclooctene and styrene oxidation, Appl. Catal. A: Gen. 346 (2008) 65-71.

    41. [41]

      [41] G. Grivani, S. Delkhosh, K. Fejfarová, M. Dušek, A.D. Khalaji, Polynuclear oxovanadium( IV) Schiff base complex [VOL2]n (L = (5-bromo-2-hydroxybenzyl-2-furylmethyl) imine): synthesis, characterization, crystal structure, catalytic properties and thermal decomposition into V2O5 nano-particles, Inorg. Chem. Commun. 27 (2013) 82-87.

    42. [42]

      [42] G. Grivani, G. Bruno, H.A. Rudbari, A.D. Khalaji, P. Pourteimouri, Synthesis, characterization and crystal structure determination of a new oxovanadium(IV) Schiff base complex: the catalytic activity in the epoxidation of cyclooctene, Inorg. Chem. Commun. 18 (2012) 15-20.

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    3. [3]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    4. [4]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    5. [5]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    6. [6]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    7. [7]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    8. [8]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    11. [11]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    12. [12]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    13. [13]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    14. [14]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    15. [15]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    16. [16]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    19. [19]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    20. [20]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

Metrics
  • PDF Downloads(0)
  • Abstract views(606)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return