Citation: Zhijie Wang, Elizabeth S. Brown, Stephen Maldonado. Hybrid solar cells constructed of macroporous n-type GaP coated with PEDOT:PSS[J]. Chinese Chemical Letters, ;2015, 26(4): 469-473. doi: 10.1016/j.cclet.2015.03.009 shu

Hybrid solar cells constructed of macroporous n-type GaP coated with PEDOT:PSS

  • Corresponding author: Stephen Maldonado, 
  • Received Date: 12 January 2015
    Available Online: 27 February 2015

    Fund Project:

  • Hybrid organic-inorganic solar cell devices were fabricated utilizing macroporous n-type GaP and poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS). The high-aspect ratio structures of the macroporous GaP resulted in higher photocurrent and external quantum yield as a function of wavelength. Photocurrent-voltage measurements as a function of light intensity revealed information on the dependence of short-circuit current (Jsc) and open-circuit voltage (Voc) on light intensity. Under 1.0 Sun illumination, hybrid macroporous GaP/PEDOT:PSS devices showed Jsc of 2.34 mA cm-2, Voc of 0.95 V, fill factor of 0.54, and overall efficiency of 1.21%. The extent of the influence of dopant density of GaP on hybrid device performance was probed with current density-voltage measurements. The addition of a gold nanoparticle coating on macroporous GaP prior to PEDOT:PSS coating showed increased device performance, with overall efficiency of 1.81%. Gold-modified planar GaP/PEDOT:PSS showed decreased Jsc and Voc values and lower external quantum yield over all wavelengths.
  • 加载中
    1. [1]

      [1] B.A. Gregg, Excitonic solar cells, J. Phys. Chem. B 107 (2003) 4688-4698.

    2. [2]

      [2] W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells, Science 295 (2002) 2425-2427.

    3. [3]

      [3] C. Sanchez, B. Julían, P. Belleville, M. Popall, Applications of hybrid organic- inorganic nanocomposites, J. Mater. Chem. 15 (2005) 3559-3592.

    4. [4]

      [4] W.J.E. Beek, M.M. Wienk, M. Kemerink, X.N. Yang, R.A.J. Janssen, Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells, J. Phys. Chem. B 109 (2005) 9505-9516.

    5. [5]

      [5] W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer, Adv. Mater. 16 (2004) 1009-1013.

    6. [6]

      [6] G. Mariani, R.B. Laghumavarapu, B.T. de Villers, et al., Hybrid conjugated polymer solar cells using patterned GaAs nanopillars, Appl. Phys. Lett. 97 (2010) 013107.

    7. [7]

      [7] C.K. Yong, K. Noori, Q. Gao, et al., Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer, Nano Lett. 12 (2012) 6293-6301.

    8. [8]

      [8] J.H. Heo, S.H. Im, J.H. Noh, et al., Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photonics 7 (2013) 487-491.

    9. [9]

      [9] Y. Ding, R. Gresback, Q.M. Liu, et al., Silicon nanocrystal conjugated polymer hybrid solar cells with improved performance, Nano Energy 9 (2014) 25-31.

    10. [10]

      [10] V. Svrcek, D. Mariotti, T. Yamanari, K. Matsubara, M. Kondo, Integration of surfactant-free silicon nanocrystal in hybrid solar cells, Jpn. J. Appl. Phys. 51 (2012) 10NE25.

    11. [11]

      [11] S. Kim, J.H. Lee, M.T. Swihart, J.C. Lee, J.Y. Kim, Silicon nanoparticle size-dependent open circuit voltage in an organic-inorganic hybrid solar cell, Curr. Appl. Phys. 14 (2014) 127-131.

    12. [12]

      [12] R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Roll-to-roll fabrication of polymer solar cells, Mater. Today 15 (2012) 36-49.

    13. [13]

      [13] F.C. Krebs, S.A. Gevorgyan, J. Alstrup, A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies, J. Mater. Chem. 19 (2009) 5442-5451.

    14. [14]

      [14] J.Y. Kim, J.H. Jung, D.E. Lee, J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents, Synth. Met. 126 (2002) 311-316.

    15. [15]

      [15] R. Steim, F.R. Kogler, C.J. Brabec, Interface materials for organic solar cells, J. Mater. Chem. 20 (2010) 2499-2512.

    16. [16]

      [16] S.A. Carter, M. Angelopoulos, S. Karg, P.J. Brock, J.C. Scott, Polymeric anodes for improved polymer light-emitting diode performance, Appl. Phys. Lett. 70 (1997) 2067-2069.

    17. [17]

      [17] Y. Cao, G. Yu, C. Zhang, R. Menon, A.J. Heeger, Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode, Synth. Met. 87 (1997) 171-174.

    18. [18]

      [18] H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces, Adv. Mater. 11 (1999) 605-625.

    19. [19]

      [19] A. Kahn, N. Koch, W.Y. Gao, Electronic structure and electrical properties of interfaces between metals and p-conjugated molecular films, J. Polym. Sci. Pol. Phys. 41 (2003) 2529-2548.

    20. [20]

      [20] M.J. Price, J.M. Foley, R.A. May, S. Maldonado, Comparison of majority carrier charge-transfer velocities at Si/polymer and Si/metal photovoltaic heterojunctions, Appl. Phys. Lett. 97 (3) (2010) 083503.

    21. [21]

      [21] J.F. McCann, L.J. Handley, The photoelectrochemical effect at a p-GaP electrode, Nature 283 (1980) 843-845.

    22. [22]

      [22] M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on ptype gallium phosphide in liquid junction solar cells, Nature 275 (1978) 115-116.

    23. [23]

      [23] P.A. Kohl, A.J. Bard, Semiconductor electrodes. 13. Characterization and behavior of n-type zinc oxide, cadmium sulfide, and gallium phosphide electrodes in acetonitrile solutions, J. Am. Chem. Soc. 99 (1977) 7531-7539.

    24. [24]

      [24] J.A. Turner, A realizable renewable energy future, Science 285 (1999) 687-689.

    25. [25]

      [25] M.P. Dare-Edwards, A. Hamnett, J.B. Goodenough, The efficiency of photogeneration of hydrogen at p-type III/V semiconductors, J. Electroanal. Chem. 119 (1981) 109-123.

    26. [26]

      [26] C.M. Gronet, N.S. Lewis, Design of a 13% efficient n-GaAs1 xPx semiconductor- liquid junction solar cell, Nature 300 (1982) 733-735.

    27. [27]

      [27] J.P. Petit, P. Chartier, M. Beley, J.P. Deville, Molecular catalysts in photoelectrochemical cells: study of an efficient system for the selective photoelectroreduction of CO2: p-GaP or p-GaAs/Ni(cyclam)2+, aqueous medium, J. Electroanal. Chem. 269 (1989) 267-281.

    28. [28]

      [28] M.J. Price, S. Maldonado, Macroporous n-GaP in nonaqueous regenerative photoelectrochemical cells, J. Phys. Chem. C 113 (2009) 11988-11994.

    29. [29]

      [29] W. Wen, A.I. Carim, S.M. Collins, et al., Structural and photoelectrochemical properties of GaP nanowires annealed in NH3, J. Phys. Chem. C 115 (2011) 22652-22661.

    30. [30]

      [30] J.W. Sun, C. Liu, P.D. Yang, Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction, J. Am. Chem. Soc. 133 (2011) 19306-19309.

    31. [31]

      [31] J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc. 11 (1951) 55-75.

    32. [32]

      [32] C.R. Allen, J.H. Jeon, J.M. Woodall, Simulation assisted design of a gallium phosphide n-p photovoltaic junction, Sol. Energy Mater. 94 (2010) 865-868.

    33. [33]

      [33] C.R. Allen, J.M. Woodall, J.H. Jeon, Results of a gallium phosphide photovoltaic junction with an AR coating under concentration of natural sunlight, Sol. Energy Mater. 95 (2011) 2655-2658.

    34. [34]

      [34] M.A. Butler, D.S. Ginley, P-type GaP as a semiconducting photoelectrode, J. Electrochem. Soc. 127 (1980) 1273-1278.

    35. [35]

      [35] J. Mukherjee, S. Peczonczyk, S. Maldonado, Wet chemical functionalization of III- V semiconductor surfaces: alkylation of gallium phosphide using a grignard reaction sequence, Langmuir 26 (2010) 10890-10896.

    36. [36]

      [36] S.L. Peczonczyk, E.S. Brown, S. Maldonado, Secondary functionalization of allylterminated GaP(1 1 1)A surfaces via heck cross-coupling metathesis, hydrosilylation, and electrophilic addition of bromine, Langmuir 30 (2014) 156-164.

    37. [37]

      [37] E.S. Brown, S.L. Peczonczyk, Z.J. Wang, S. Maldonado, Photoelectrochemical properties of CH3-terminated p-type GaP(1 1 1)A, J. Phys. Chem. C 118 (2014) 11593-11600.

    38. [38]

      [38] E.S. Brown, S.L. Peczonczyk, S. Maldonado, Wet chemical functionalization of GaP(1 1 1)B through a williamson ether-type reaction, J. Phys. Chem. C 119 (2015) 1338-1345.

    39. [39]

      [39] A. Yoshida, N. Toshima, Gold nanoparticle and gold nanorod embedded PEDOT: PSS thin films as organic thermoelectric materials, J. Electron. Mater. 43 (2014) 1492-1497.

    40. [40]

      [40] Z.H. Chen, Y.B. Tang, C.P. Liu, et al., Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for schottky barrier photovoltaic cells, J. Phys. Chem. C 113 (2009) 13433-13437.

    41. [41]

      [41] S. Jayaraman, P.S. Kumar, D. Mangalaraj, et al., Enhanced luminescence and charge separation in polythiophene-grafted, gold nanoparticle-decorated, 1-D ZnO nanorods, RSC Adv. 4 (2014) 11288-11294.

  • 加载中
    1. [1]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    2. [2]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    3. [3]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    4. [4]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    5. [5]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    6. [6]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    7. [7]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    8. [8]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    9. [9]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    10. [10]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    11. [11]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    12. [12]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    13. [13]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    14. [14]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    15. [15]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    16. [16]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    17. [17]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    18. [18]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    19. [19]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    20. [20]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

Metrics
  • PDF Downloads(0)
  • Abstract views(451)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return