Citation: Hui Joon Park, L. Jay Guo. Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells[J]. Chinese Chemical Letters, ;2015, 26(4): 419-425. doi: 10.1016/j.cclet.2015.02.001 shu

Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells

  • Corresponding author: Hui Joon Park,  L. Jay Guo, 
  • Received Date: 13 November 2014
    Available Online: 7 January 2015

    Fund Project:

  • In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semiconductors (around 10 nm) and the large thickness required to fully absorb sunlight (e.g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can easily control the dimension and uniformity of structures for large-area and uniform plasmonic nanostructures were demonstrated.
  • 加载中
    1. [1]

      [1] H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9 (2010) 205-213.

    2. [2]

      [2] E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions, Science 311 (2006) 189-193.

    3. [3]

      [3] W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature 424 (2003) 824-830.

    4. [4]

      [4] X.G. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique, Appl. Phys. Lett. 84 (2004) 4780-4782.

    5. [5]

      [5] N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science 308 (2005) 534-537.

    6. [6]

      [6] M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc. 99 (1977) 5215-5217.

    7. [7]

      [7] H.J. Park, T. Xu, J.Y. Lee, A.B. Ledbetter, L.J. Guo, Photonic color filters integrated with organic solar cells for energy harvesting, ACS Nano 5 (2011) 7055-7060.

    8. [8]

      [8] T.H. Reilly III, J. van de Lagemaat, R.C. Tenent, A.J. Morfa, K.L. Rowlen, Surface plasmon enhanced transparent electrodes in organic photovoltaics, Appl. Phys. Lett. 92 (2008) 243304.

    9. [9]

      [9] S.-W. Baek, J. Noh, C.-H. Lee, et al., Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method, Sci. Rep. 3 (2013) 1726.

    10. [10]

      [10] L.Y. Lu, Z.Q. Luo, T. Xu, L.P. Yu, Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells, Nano Lett. 13 (2013) 59-64.

    11. [11]

      [11] M.-G. Kang, T. Xu, H.J. Park, X. Luo, L.J. Guo, Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes, Adv. Mater. 22 (2010) 4378-4383.

    12. [12]

      [12] M.-G. Kang, H.J. Park, S.H. Ahn, T. Xu, L.J. Guo, Toward low-cost, high-efficiency, and scalable organic solar cells with transparent metal electrode and improved domain morphology, IEEE J. Sel. Top. Quantum Electron. 16 (2010) 1807-1820.

    13. [13]

      [13] H.J. Park, M.-G. Kang, S.H. Ahn, L.J. Guo, A facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performances, Adv. Mater. 22 (2010) E247-E253.

    14. [14]

      [14] H.J. Park, H. Kim, J.Y. Lee, T. Lee, L.J. Guo, Optimization of polymer photovoltaic cells with bulk heterojunction layers hundreds of nanometers thick: modifying the morphology and cathode interface, Energy Environ. Sci. 6 (2013) 2203-2210.

    15. [15]

      [15] H.J. Park, J.Y. Lee, T. Lee, L.J. Guo, Advanced heterojunction structure of polymer photovoltaic cell generating high photocurrent with internal quantum efficiency approaching 100%, Adv. Energy Mater. 3 (2013) 1135-1142.

    16. [16]

      [16] P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Exciton diffusion measurements in poly(3- hexylthiophene), Adv. Mater. 20 (2008) 3516-3520.

    17. [17]

      [17] W.A. Luhman, R.J. Holmes, Investigation of energy transfer in organic photovoltaic cells and impact on exciton diffusion length measurements, Adv. Funct. Mater. 21 (2011) 764-771.

    18. [18]

      [18] M. Theander, A. Yartsev, D. Zigmantas, et al., Photoluminescence quenching at a polythiophene/C60 heterojunction, Phys. Rev. B 61 (2000) 12957-12963.

    19. [19]

      [19] S.S. Kim, S.I. Na, J. Jo, D.Y. Kim, Y.C. Nah, Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles, Appl. Phys. Lett. 93 (2008) 073307.

    20. [20]

      [20] M. Iqbal, Y.I. Chung, G. Tae, An enhanced synthesis of gold nanorods by the addition of Pluronic (F-127) via a seed mediated growth process, J. Mater. Chem. 17 (2007) 335-342.

    21. [21]

      [21] H.A. Day, D. Bartczak, N. Fairbairn, et al., Controlling the three-dimensional morphology of nanocrystals, Cryst. Eng. Commun. 12 (2010) 4312-4316.

    22. [22]

      [22] F.C. Chen, J.L. Wu, C.L. Lee, et al., Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles, Appl. Phys. Lett. 95 (2009) 013305.

    23. [23]

      [23] J.H. Lee, J.H. Park, J.S. Kim, D.Y. Lee, K. Cho, High efficiency polymer solar cells with wet deposited plasmonic gold nanodots, Org. Electron. 10 (2009) 416-420.

    24. [24]

      [24] E. Stratakis, M. Barberoglou, C. Fotakis, et al., Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses, Opt. Express 17 (2009) 12650-12659.

    25. [25]

      [25] A.J. Morfa, K.L. Rowlen, T.H. Reilly III, M.J. Romero, J.V.D. Lagemaat, Plasmonenhanced solar energy conversion in organic bulk heterojunction photovoltaics, Appl. Phys. Lett. 92 (2008) 013504.

    26. [26]

      [26] C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York, USA, 1983.

    27. [27]

      [27] G. Spyropoulos, M. Stylianakis, E. Stratakis, E. Kymakis, Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer, Appl. Phys. Lett. 100 (2012) 213904.

    28. [28]

      [28] S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells, J. Appl. Phys. 101 (2007) 093105.

    29. [29]

      [29] M.A. Sefunc, A.K. Okyay, H.V. Demir, Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations, Opt. Express 19 (2011) 14200-14209.

    30. [30]

      [30] M.G. Kang, H.J. Park, S.H. Ahn, L.J. Guo, Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells, Sol. Energy Mater. Sol. Cells 94 (2010) 1179-1184.

    31. [31]

      [31] J.L. Wu, F.C. Chen, Y.S. Hsiao, et al., Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells, ACS Nano 5 (2011) 959-967.

    32. [32]

      [32] J.N. Pei, J.L. Tao, Y.H. Zhou, et al., Efficiency enhancement of polymer solar cells by incorporating a self-assembled layer of silver nanodisks, Sol. Energy Mater. Sol. Cells 95 (2011) 3281-3286.

    33. [33]

      [33] L.F. Qiao, D. Wang, L.J. Zuo, et al., Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres, Appl. Energy 88 (2011) 848-852.

    34. [34]

      [34] Y.S. Hsiao, S. Charan, F.Y. Wu, et al., Improving the light trapping efficiency of plasmonic polymer solar cells through photon management, J. Phys. Chem. C 116 (2012) 20731-20737.

    35. [35]

      [35] H. Choi, S.J. Ko, Y. Choi, et al., Versatile surface plasmon resonance of carbon-dotsupported silver nanoparticles in polymer optoelectronic devices, Nat. Photonics 7 (2013) 732-738.

    36. [36]

      [36] J. Yang, J. You, C.C. Chen, et al., Plasmonic polymer tandem solar cell, ACS Nano 5 (2011) 6210-6217.

    37. [37]

      [37] D.D.S. Fung, L. Qiao, W.C.H. Choy, et al., Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer, J. Mater. Chem. 21 (2011) 16349-16356.

    38. [38]

      [38] M. Stavytska-Barba, A.M. Kelley, Surface-enhanced Raman study of the interaction of PEDOT:PSS with plasmonically active nanoparticles, J. Phys. Chem. C 114 (2010) 6822-6830.

    39. [39]

      [39] D.H. Wang, D.Y. Kim, K.W. Choi, et al., Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles, Angew. Chem. Int. Ed. 50 (2011) 5519-5523.

    40. [40]

      [40] D.H. Wang, K.H. Park, J.H. Seo, et al., Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters, Adv. Energy Mater. 1 (2011) 766-770.

    41. [41]

      [41] C.H. Kim, S.H. Cha, S.C. Kim, et al., Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications, ACS Nano 5 (2011) 3319- 3325.

    42. [42]

      [42] D.H. Wang, J.K. Kim, G.-H. Lim, et al., Enhanced light harvesting in bulk heterojunction photovoltaic devices with shape-controlled Ag nanomaterials: Ag nanoparticles versus Ag nanoplates, RSC Adv. 2 (2012) 7268-7272.

    43. [43]

      [43] K. Topp, H. Borchert, F. Johnen, et al., Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells, J. Phys. Chem. A 114 (2010) 3981-3989.

    44. [44]

      [44] M.D. Brown, T. Suteewong, R.S.S. Kumar, et al., Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles, Nano Lett. 11 (2010) 438-445.

    45. [45]

      [45] H.C. Liao, C.S. Tsao, T.H. Lin, et al., Nanoparticle-tuned self-organization of a bulk heterojunction hybrid solar cell with enhanced performance, ACS Nano 6 (2012) 1657-1666.

    46. [46]

      [46] B. Paci, G.D. Spyropoulos, A. Generosi, et al., Enhanced structural stability and performance durability of bulk heterojunction photovoltaic devices incorporating metallic nanoparticles, Adv. Funct. Mater. 21 (2011) 3573-3582.

    47. [47]

      [47] B. Paci, A. Generosi, V.R. Albertini, et al., Enhancement of photo/thermal stability of organic bulk heterojunction photovoltaic devices via gold nanoparticles doping of the active layer, Nanoscale 4 (2012) 7452-7459.

    48. [48]

      [48] B.D. Lucas, J. Kim, C. Chin, L.J. Guo, Nanoimprint lithography based approach for the fabrication of large-area, uniformly-oriented plasmonic arrays, Adv. Mater. 20 (2008) 1129-1134.

    49. [49]

      [49] C. Pina-Hernandez, J.S. Kim, L.J. Guo, P.F. Fu, High-throughput and etch-selective nanoimprinting and stamping based on fast-thermal-curing poly(dimethylsiloxane) s, Adv. Mater. 19 (2007) 1222-1227.

    50. [50]

      [50] H.J. Park, M.G. Kang, L.J. Guo, Large area high density sub-20 nm SiO2 nanostructures fabricated by block copolymer template for nanoimprint lithography, ACS Nano 3 (2009) 2601-2608.

    51. [51]

      [51] K. Tvingstedt, N.K. Persson, O. Inganas, A. Rahachou, I.V. Zozoulenko, Surface plasmon increase absorption in polymer photovoltaic cells, Appl. Phys. Lett. 91 (2007) 113514.

    52. [52]

      [52] C. Min, J. Li, G. Veronis, et al., Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings, Appl. Phys. Lett. 96 (2010) 133302.

  • 加载中
    1. [1]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    2. [2]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    3. [3]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    4. [4]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    5. [5]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    6. [6]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    7. [7]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    8. [8]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    9. [9]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

    10. [10]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    11. [11]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    12. [12]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    13. [13]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    14. [14]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    15. [15]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    16. [16]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    17. [17]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    18. [18]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    19. [19]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    20. [20]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

Metrics
  • PDF Downloads(0)
  • Abstract views(454)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return