Citation: Peng-Fei Li, Ying Han, Chuan-Feng Chen. Synthesis and structures of triptycene-derived Tröger's base molecular clips[J]. Chinese Chemical Letters, ;2015, 26(7): 839-842. doi: 10.1016/j.cclet.2015.01.031
-
A series of triptycene-derived Tröger's bases with molecular clip shaped structures have been conveniently and efficiently synthesized by one-pot condensation of corresponding amino-substituted triptycenes with paraformaldehyde in the presence of trifluoroacetic acid, and their structures have been characterized by NMR, MALDI-TOF MS spectra, elemental analyses and single-crystal X-ray diffraction.
-
Keywords:
- Triptycene,
- Tröger's base,
- Molecular clip,
- Synthesis
-
-
[1]
[1] (a) F.G. Klärner, B. Kahlert, Molecular tweezers and clips as synthetic receptors. Molecular recognition and dynamics in receptor–substrate complexes, Acc. Chem. Res. 36 (2003) 919–932; (b) M. Hardouin–Lerouge, P. Hudhomme, M. Sallé, Molecular clips and tweezers hosting neutral guests, Chem. Soc. Rev. 40 (2011) 30–43.
-
[2]
[2] B. Dolenský, J. Kessler, M. Jakubek, et al., Synthesis and characterisation of a new naphthalene tris-Tröger's base derivative –a chiral molecular clip, Tetrahedron Lett. 54 (2013) 308–311.
-
[3]
[3] (a) B. Dolenský, M. Havlík, V. Král, Oligo Tröger's bases-new molecular scaffolds, Chem. Soc. Rev. 41 (2012) 3839–3858; (b) S. Sergeyev, Recent developments in synthetic chemistry, chiral separations, and applications of Tröger's base analogues, Helv. Chim. Acta 92 (2009) 415–444; (c) M. Valík, R.M. Strongin, V. Král, Tröger's base derivatives-new life for old compounds, Supramol. Chem. 17 (2005) 347–367.
-
[4]
[4] C.S. Wilcox, L.M. Greer, V. Lynch, Synthesis of chiral molecular clefts. New armatures for biomimetic systems, J. Am. Chem. Soc. 109 (1987) 1865–1867.
-
[5]
[5] (a) C.F. Chen, Y.X. Ma, Iptycene Chemistry: From Synthesis to Applications, Springer-Verlag, Berlin, Heidelberg, 2013; (b) C. Zhang, Y. Liu, X.Q. Xiong, et al., Three-dimensional nanographene based on triptycene: synthesis and its application in fluorescence imaging, Org. Lett. 14 (2012) 5912–5915; (c) C. Zhang, L.H. Peng, B. Li, et al., Organic microporous polymer from a hexaphenylbenzene based triptycene monomer: synthesis and its gas storage properties, Polym. Chem. 4 (2013) 3663–3666; (d) C. Zhang, Y. Liu, B. Li, et al., Triptycene-based microporous polymers: synthesis and their gas storage properties, ACS Macro Lett. 1 (2012) 190–193.
-
[6]
[6] (a) C.F. Chen, Novel triptycene-derived hosts: synthesis and their applications in supramolecular chemistry, Chem. Commun. 47 (2011) 1674–1688; (b) Y. Han, Z. Meng, Y.X. Ma, C.F. Chen, Iptycene-derived crown ether hosts for molecular recognition and self-assembly, Acc. Chem. Res. 47 (2014) 2026–2040.
-
[7]
[7] (a) X.X. Peng, H.Y. Lu, T. Han, C.F. Chen, Synthesis of a novel triptycene-based molecular tweezer and its complexation with paraquat derivatives, Org. Lett. 9 (2007) 895–898; (b) J. Cao, X.Z. Zhu, C.F. Chen, Synthesis, structure, and binding property of pentiptycene-based rigid tweezer-like molecules, J. Org. Chem. 75 (2010) 7420–7423; (c) Y. Jiang, J. Cao, J.M. Zhao, J.F. Xiang, C.F. Chen, Synthesis of a triptycene-derived bisparaphenylene-34-crown-10 and its complexation with both paraquat and cyclobis(paraquat-p-phenylene), J. Org. Chem. 75 (2010) 1767–1770; (d) T. Han, C.F. Chen, A triptycene-based bis(crown ether) host: complexation with both paraquat derivatives and dibenzylammonium salts, Org. Lett. 8 (2006) 1069–1072.
-
[8]
[8] C. Zhang, C.F. Chen, Synthesis and structure of 2,6,14- and 2,7,14-trisubstituted triptycene derivatives, J. Org. Chem. 71 (2006) 6626–6629.
-
[9]
[9] (a) J.H. Chong, M.J. MacLachlan, Robust non-interpenetrating coordination frameworks from new shape-persistent building blocks, Inorg. Chem. 45 (2006) 1442–1444; (b) J.H. Chong, M.J. MacLachlan, Synthesis and structural investigation of new triptycene-based ligands: en route to shape-persistent dendrimers and macrocycles with large free volume, J. Org. Chem. 72 (2007) 8683–8690.
-
[10]
[10] (a) X.Z. Zhu, C.F. Chen, A highly efficient approach to [4]pseudocatenanes by threefold metathesis reactions of a triptycene-based tris[2]pseudorotaxane, J. Am. Chem. Soc. 127 (2005) 13158–13159; (b) Y. Han, Y. Jiang, C.F. Chen, Solid state self-assembly of triptycene-based catechol derivatives by multiple O–H…O hydrogen bonds, Chin. Chem. Lett. 24 (2013) 475–478.
-
[11]
[11] J.M. Zhao, H.Y. Lu, J. Cao, Y. Jiang, C.F. Chen, Highly selective synthesis of triptycene O-quinone derivatives and their optical and electrochemical properties, Tetrahedron Lett. 50 (2009) 219–222.
-
[1]
-
-
[1]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[2]
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
-
[3]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[4]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[5]
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
-
[6]
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
-
[7]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[8]
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
-
[9]
Jindong Hao , Yufen Lv , Shuyue Tian , Chao Ma , Wenxiu Cui , Huilan Yue , Wei Wei , Dong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513
-
[10]
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
-
[11]
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
-
[12]
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
-
[13]
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
-
[14]
Hui Jin , Qin Cai , Peiwen Liu , Yan Chen , Derong Wang , Weiping Zhu , Yufang Xu , Xuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721
-
[15]
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
-
[16]
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
-
[17]
Xiaoyu Chen , Jiahao Hu , Jingyi Lin , Haiyang Huang , Changqing Ye , Hongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923
-
[18]
Tengfei Xuan , Xinyu Zhang , Wei Han , Yidong Huang , Weiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816
-
[19]
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
-
[20]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(520)
- HTML views(1)