Citation: Jie Yin, Fei Zhao, Chao Tao, Xue-Ding Wang, Xiao-Jun Liu. Listen to the chemical and histological information in biological tissue[J]. Chinese Chemical Letters, ;2015, 26(4): 395-400. doi: 10.1016/j.cclet.2015.01.030 shu

Listen to the chemical and histological information in biological tissue

  • Corresponding author: Chao Tao,  Xue-Ding Wang,  Xiao-Jun Liu, 
  • Received Date: 1 December 2014
    Available Online: 6 January 2015

    Fund Project: This work was supported by the National Basic Research Program of China (No. 2012CB921504) (No. 2012CB921504)

  • Photoacoustic imaging (PAI), as an emerging biomedicine diagnostic technique that has been developed quickly in the past decade, inherits the high spatial resolution of ultrasonography in imaging deep tissue and the high sensitivity of optical imaging in evaluating tissue chemical and physiological information. In this paper, after introducing the basic principles of PAI including both photoacoustic tomography and photoacoustic microscopy, we will review some recent progress of PAI in biomedicine and demonstrate the capability of PAI in detecting the chemical compositions and in evaluating the histological microstructures in biological tissue.
  • 加载中
    1. [1]

      [1] L. Gortzak-Uzan,W. Jimenez, S. Nofech-Mozes, et al., Sentinel lymph node biopsy vs. pelvic lymphadenectomy in early stage cervical cancer: is it time to change the gold standard, Gynecol. Oncol. 116 (2010) 28-32.

    2. [2]

      [2] D. Joy, V.R. Thava, B.B. Scott, Diagnosis of fatty liver disease: is biopsy necessary, Eur. J. Gastroenterol. Hepatol. 15 (2003) 539-543.

    3. [3]

      [3] Z.H. Cui, X.D. Wang, J.C. Guo, et al., Synthesis, spectroscopic properties and applications of novel N-heterocycle-containing benzotriazoles as UV absorbers, Chin. Chem. Lett. 23 (2012) 1019-1022.

    4. [4]

      [4] Y.N. Ni, W. Lin, Near-infrared spectra combined with partial least squares for pH determination of toothpaste of different brands, Chin. Chem. Lett. 22 (2011) 1473-1476.

    5. [5]

      [5] J. Harlander, F.L. Roesler, Spatial heterodyne spectroscopy-a novel interferometric- technique for ground-based and space astronomy, Proc. Soc. Photo-Opt. Instrum. 1235 (1990) 622-633.

    6. [6]

      [6] A.G. Podoleanu, Optical coherence tomography, J. Microsc.-Oxford 247 (2012) 209-219.

    7. [7]

      [7] F. Helmchen, W. Denk, Deep tissue two-photon microscopy, Nat. Methods 2 (2005) 932-940.

    8. [8]

      [8] R. Rezakhaniha, A. Agianniotis, J.T.C. Schrauwen, et al., Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy, Biomech. Model. Mechanobiol. 11 (2012) 461-473.

    9. [9]

      [9] K.W. Dunn, R.M. Sandoval, K.J. Kelly, et al., Functional studies of the kidney of living animals using multicolor two-photon microscopy, Am. J. Physiol.: Cell Physiol. 283 (2002) C905-C916.

    10. [10]

      [10] M.A. Yaseen, S. Sakadzic, W.C. Wu, et al., in vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH, Biomed. Opt. Express 4 (2013) 307-321.

    11. [11]

      [11] T. Fernandez-Alfonso, K.M.N.S. Nadella, M.F. Iacaruso, et al., Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope, J. Neurosci. Methods 222 (2014) 69- 81.

    12. [12]

      [12] L.V. Wang, S. Hu, Photoacoustic tomography: in vivo imaging from organelles to organs, Science 335 (2012) 1458-1462.

    13. [13]

      [13] C.X. Qin, K. Cheng, K. Chen, et al., Tyrosinase as a multifunctional reporter gene for photoacoustic/MRI/PET triple modality molecular imaging, Sci. Rep. 3 (2013) 1490.

    14. [14]

      [14] C.Y. Li, J.M. Yang, R.M. Chen, et al., Photoacoustic endoscopic imaging study of melanoma tumor growth in a rat colorectum in vivo, Photons Plus Ultrasound: Imag. Sens. 2013 (2013) 8581.

    15. [15]

      [15] L.V. Wang, Multiscale photoacoustic microscopy and computed tomography, Nat. Photonics 3 (2009) 503-509.

    16. [16]

      [16] J.P. Culver, V. Ntziachristos, M.J. Holboke, A.G. Yodh, Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis, Opt. Lett. 26 (2001) 701-703.

    17. [17]

      [17] C.H. Li, L.V. Wang, Photoacoustic tomography and sensing in biomedicine, Phys. Med. Biol. 54 (2009) R59-R97.

    18. [18]

      [18] J.J. Yao, L.D. Wang, C.Y. Li, C. Zhang, L.V. Wang, Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging, Phys. Rev. Lett. 112 (2014) 014302.

    19. [19]

      [19] J. Yao, J. Xia, K.I. Maslov, et al., Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo, Neuroimage 64 (2013) 257-266.

    20. [20]

      [20] S. Yang, D. Xing, Q. Zhou, L. Xiang, Y. Lao, Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography, Med. Phys. 34 (2007) 3294-3301.

    21. [21]

      [21] I.G. Calasso, W. Craig, G.J. Diebold, Photoacoustic point source, Phys. Rev. Lett. 86 (2001) 3550-3553.

    22. [22]

      [22] G.J. Diebold, M.I. Khan, S.M. Park, Photoacoustic signatures of particulate matter-optical production of acoustic monopole radiation, Science 250 (1990) 101-104.

    23. [23]

      [23] M.H. Xu, L.V. Wang, Universal back-projection algorithm for photoacoustic computed tomography, Phys. Rev. E 71 (2005) 016706.

    24. [24]

      [24] X.D. Wang, Y.J. Pang, G. Ku, et al., Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain, Nat. Biotechnol. 21 (2003) 803-806.

    25. [25]

      [25] M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nustero, G. Paltauf, Thermoacoustic tomography and the circular radon transform: exact inversion formula, Math. Models Methods Appl. Sci. 17 (2007) 635-655.

    26. [26]

      [26] K.P. Kostli, P.C. Beard, Two-dimensional photoacoustic imaging by use of Fouriertransform image reconstruction and a detector with an anisotropic response, Appl. Opt. 42 (2003) 1899-1908.

    27. [27]

      [27] H.F. Zhang, K. Maslov, G. Stoica, L.V. Wang, Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging, Nat. Biotechnol. 24 (2006) 848-851.

    28. [28]

      [28] J.M. Yang, C. Favazza, R.M. Chen, et al., Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo, Nat. Med. 18 (2012) 1297- 1302.

    29. [29]

      [29] J.M. Yang, C. Favazza, R.M. Chen, et al., Volumetric photoacoustic endoscopy of upper gastrointestinal tract: ultrasonic transducer technology development, Photons Plus Ultrasound: Imag. Sens. 7899 (2011) 78990D.

    30. [30]

      [30] D.K. Yao, K. Maslov, K.K. Shung, Q.F. Zhou, L.V. Wang, in vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA, Opt. Lett. 35 (2010) 4139-4141.

    31. [31]

      [31] O.L. Mangasarian, W.N. Street, W.H. Wolberg, Breast cancer diagnosis and prognosis via linear programming, Oper. Res. 43 (1995) 570-577.

    32. [32]

      [32] J. Yao, L.V. Wang, Photoacoustic microscopy, Laser Photonics Rev. 7 (2013) 758-778.

    33. [33]

      [33] G.J. Huang, Z. Si, S.H. Yang, C. Li, D. Xing, Dextran based pH-sensitive near-infrared nanoprobe for in vivo differential-absorption dual-wavelength photoacoustic imaging of tumors, J. Mater. Chem. 22 (2012) 22575-22581.

    34. [34]

      [34] G. Ku, X.D. Wang, X.Y. Xie, G. Stoica, L.V. Wang, Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography, Appl. Opt. 44 (2005) 770-775.

    35. [35]

      [35] C.P. Favazza, L.A. Cornelius, L.V.Wang, in vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin, J. Biomed. Opt. 16 (2011) 026004.

    36. [36]

      [36] H.W. Wang, N. Chai, P. Wang, et al., Label-free bond-selective imaging by listening to vibrationally excited molecules, Phys. Rev. Lett. 106 (2011) 238106.

    37. [37]

      [37] G. Xu, Z.X. Meng, J.D. Lin, et al., The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis, Radiology 271 (2014) 248-254.

    38. [38]

      [38] K. Kanazaki, K. Sano, A. Makino, et al., Development of human serum albumin conjugated with near-infrared dye for photoacoustic tumor imaging, J. Biomed. Opt. 19 (2014) 096002, http://biomedicaloptics.spiedigitallibrary.org/article. aspx?articleid=1903205.

    39. [39]

      [39] H. Ju, R.A. Roy, T.W. Murray, Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy, Biomed. Opt. Express 4 (2013) 66-76.

    40. [40]

      [40] K.A. Homan, M. Souza, R. Truby, et al., Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging, ACS Nano 6 (2012) 641-650.

    41. [41]

      [41] L. Wu, X. Cai, K. Nelson, et al., A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging, Nano Res. 6 (2013) 312-325.

    42. [42]

      [42] A. Dragulescu-Andrasi, S.R. Kothapalli, G.A. Tikhomirov, et al., Activatable oligomerizable imaging agents for photoacoustic imaging of furin-like activity in living subjects, J. Am. Chem. Soc. 135 (2013) 11015-11022.

    43. [43]

      [43] L. Nie, X. Chen, Structural and functional photoacoustic molecular tomography aided by emerging contrast agents, Chem. Soc. Rev. 43 (2014) 7132-7170.

    44. [44]

      [44] E.I. Galanzha, V.P. Zharov, Photoacoustic flow cytometry, Methods 57 (2012) 280-296.

    45. [45]

      [45] R.K. Saha, M.C. Kolios, A simulation study on photoacoustic signals from red blood cells, J. Acoust. Soc. Am. 129 (2011) 2935-2943.

    46. [46]

      [46] E.M. Strohm, E.S.L. Berndl, M.C. Kolios, Probing red blood cell morphology using high-frequency photoacoustics, Biophys. J. 105 (2013) 59-67.

    47. [47]

      [47] R.E. Kumon, C.X. Deng, X.D. Wang, Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model, Ultrasound Med. Biol. 37 (2011) 834-839.

    48. [48]

      [48] G. Xu, I.A. Dar, C. Tao, et al., Photoacoustic spectrum analysis for microstructure characterization in biological tissue: a feasibility study, Appl. Phys. Lett. 101 (2012) 221102.

    49. [49]

      [49] Y.Q. Yang, S.H. Wang, C. Tao, X.D. Wang, X.J. Liu, Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system, Appl. Phys. Lett. 101 (2012) 034105.

    50. [50]

      [50] S.H. Wang, C. Tao, X.D. Wang, X.J. Liu, Quantitative detection of stochastic microstructure in turbid media by photoacoustic spectral matching, Appl. Phys. Lett. 102 (2013) 114102.

  • 加载中
    1. [1]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    2. [2]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    3. [3]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    4. [4]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    5. [5]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    6. [6]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    7. [7]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    8. [8]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    9. [9]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    10. [10]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    11. [11]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    12. [12]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    13. [13]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    14. [14]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    15. [15]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    16. [16]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    17. [17]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    18. [18]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    19. [19]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    20. [20]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

Metrics
  • PDF Downloads(0)
  • Abstract views(495)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return