Citation: Kazuma Yasuhara, Kenichi Kuroda. Kinetic study of all-or-none hemolysis induced by cationic amphiphilic polymethacrylates with antimicrobial activity[J]. Chinese Chemical Letters, ;2015, 26(4): 479-484. doi: 10.1016/j.cclet.2015.01.029 shu

Kinetic study of all-or-none hemolysis induced by cationic amphiphilic polymethacrylates with antimicrobial activity

  • Corresponding author: Kazuma Yasuhara,  Kenichi Kuroda, 
  • Received Date: 13 November 2014
    Available Online: 16 January 2015

    Fund Project: and JSPS KAKENHI, Grant-in-Aids for Challenging Exploratory Research (No. 25650053) for Young Scientists (Nos. 24681028 and 22700494 to KY). We thank Professor Robertson Davenport at the University of Michigan Hospital for supplying the red blood cells. We also thank Professor Edmund F. Palermo at Rensselaer Polytechnic Institute for his valuable discussions and comments. (No. DMR-0845592 to KK)

  • To gain an understanding of the toxicity of antimicrobial polymers to human cells, their hemolytic action was investigated using human red blood cells (RBCs). We examined the hemolysis induced by cationic amphiphilicmethacrylate random copolymers, which have amino ethyl sidechains as cationic units and either butyl or methyl methacrylate as hydrophobic units. The polymer with 30 mol% butyl sidechains (B30) displayed higher hemolytic toxicity than the polymer with 59 mol% methyl sidechains (M59). B30 also induced faster release of hemoglobin from RBCs than M59. A new theoretical model is proposed based on two consecutive steps to form active polymer species on the RBC membranes, which are associated to RBC lysis. This model takes the all-or-none release of hemoglobin by the rupture of RBCs into account, providing new insight into the polymer-induced hemolysis regarding how individual or collective cells respond to the polymers.
  • 加载中
    1. [1]

      [1] H.W. Boucher, G.H. Talbot, J.S. Bradley, et al., Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America, Clin. Infect. Dis. 48 (2009) 1-12.

    2. [2]

      [2] K. Kuroda, W. DeGrado, Amphiphilic polymethacrylate derivatives as antimicrobial agents, J. Am. Chem. Soc. 127 (2005) 4128-4129.

    3. [3]

      [3] H. Takahashi, E.F. Palermo, K. Yasuhara, G.A. Caputo, K. Kuroda, Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers, Macromol. Biosci. 13 (2013) 1285-1299.

    4. [4]

      [4] K. Kuroda, G.A. Caputo, Antimicrobial polymers as synthetic mimics of hostdefense peptides, Wires Nanomed. Nanobiotechnol. 5 (2013) 49-66.

    5. [5]

      [5] E.F. Palermo, S. Vemparala, K. Kuroda, Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers, Biomacromolecules 13 (2012) 1632-1641.

    6. [6]

      [6] I. Sovadinova, E.F. Palermo, M. Urban, et al., Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives, Polymers 3 (2011) 1512-1532.

    7. [7]

      [7] W. van't Hof, E. Veerman, E.J. Helmerhorst, A. Amerongen, Antimicrobial peptides: properties and applicability, Biol. Chem. 382 (2001) 597-619.

    8. [8]

      [8] G.E. Rowe, R.A. Welch, Assays of hemolytic toxins, Methods Enzymol. 235 (1994) 657-667.

    9. [9]

      [9] K. Kuroda, G.A. Caputo, W.F. DeGrado, The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives, Chem. Eur. J. 15 (2008) 1123-1133.

    10. [10]

      [10] I. Sovadinova, E.F. Palermo, R. Huang, L.M. Thoma, K. Kuroda, Mechanism of polymer-induced hemolysis: nanosized pore formation and osmotic lysis, Biomacromolecules 12 (2011) 260-268.

    11. [11]

      [11] W.F. DeGrado, G.F. Musso, M. Lieber, E.T. Kaiser, F.J. Ke′ zdy, Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue, Biophys. J. 37 (1982) 329-338.

    12. [12]

      [12] A. Pokorny, P.F.F. Almeida, Kinetics of dye efflux and lipid flip-flop induced by d-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, a-helical peptides, Biochemistry 43 (2004) 8846-8857.

    13. [13]

      [13] E.F. Palermo, D.K. Lee, A. Ramamoorthy, K. Kuroda, Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers, J. Phys. Chem. B 115 (2011) 366-375.

    14. [14]

      [14] M.T. Tosteson, S.J. Holmes, M. Razin, D.C. Tosteson, Melittin lysis of red cells, J. Membr. Biol. 87 (1985) 35-44.

    15. [15]

      [15] M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature 415 (2002) 389-395.

    16. [16]

      [16] Y. Shai, Mode of action of membrane active antimicrobial peptides, Biopolymers 66 (2002) 236-248.

    17. [17]

      [17] H.W. Huang, Action of antimicrobial peptides: two-state model, Biochemistry 39 (2000) 8347-8352.

    18. [18]

      [18] G. Schwarz, H. Gerke, V. Rizzo, S. Stankowski, Incorporation kinetics in a membrane, studied with the pore-forming peptide alamethicin, Biophys. J. 52 (1987) 685-692.

    19. [19]

      [19] K. Matsuzaki, O. Murase, K. Miyajima, Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers, Biochemistry 34 (1995) 12553-12559.

    20. [20]

      [20] T.H. Lee, C. Heng, M.J. Swann, et al., Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis, Biochim. Biophys. Acta 1798 (2010) 1977-1986.

    21. [21]

      [21] S.J. Ludtke, K. He, H.W. Huang, Membrane thinning caused by magainin 2, Biochemistry 34 (1995) 16764-16769.

    22. [22]

      [22] A.W. Bernheimer, Comparative kinetics of hemolysis induced by bacterial and other hemolysins, J. Gen. Physiol. 30 (1947) 337-353.

  • 加载中
    1. [1]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    4. [4]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    5. [5]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    6. [6]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    7. [7]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    8. [8]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    9. [9]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    10. [10]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    11. [11]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    12. [12]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    13. [13]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    14. [14]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    15. [15]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    16. [16]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    17. [17]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    18. [18]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    19. [19]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    20. [20]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

Metrics
  • PDF Downloads(0)
  • Abstract views(450)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return