Citation: Hua-Hua Wang, Yi-Yu Jiang, Mian HR Mahmood, Hai-Yang Liu, Herman H.Y. Sung, Ian D. Williams, Chi K. Chang. β-Octafl uorinated tetrakis(ethoxycarbonyl)porphyrin[J]. Chinese Chemical Letters, ;2015, 26(5): 529-533. doi: 10.1016/j.cclet.2015.01.026 shu

β-Octafl uorinated tetrakis(ethoxycarbonyl)porphyrin

  • Corresponding author: Hai-Yang Liu,  Chi K. Chang, 
  • Received Date: 26 November 2014
    Available Online: 19 January 2015

    Fund Project: This work was supported by National Natural Science Foundation of China (NNSFC) under Grant (Nos. 21171057, 21371059) (NNSFC)

  • Tetrakis(alkoxycarbonyl)porphyrin and its β-octafluoro-substituted derivatives were synthesized via Lindsey method and transformed to their zinc complexes. Single crystal X-ray structures of corresponding Zn(II) porphyrins revealed that β-octafluorination will give more compactness of porphyrin moieties in the crystal structure owing to the hydrogen bonding interactions involving bfluorine atoms. An unusual six-coordinated Zn(II) was found via intramolecular coordination of oxygen atom of meso-substituents with central Zn(II).
  • 加载中
    1. [1]

      [1] Y.S. Xie, K. Yamaguchi, M. Toganoh, et al., Triply N-confused hexaphyrins: nearinfrared luminescent dyes with a triangular shape, Angew. Chem. Int. Ed. 48 (2009) 5496-5499.

    2. [2]

      [2] Y.S. Xie, P.C. Wei, X. Li, et al., Macrocycle contraction and expansion of a dihydrosapphyrin isomer, J. Am. Chem. Soc. 135 (2013) 19119-19122.

    3. [3]

      [3] Y.Q. Wang, B. Chen, W.J. Wu, et al., Efficient solar cells sensitized by porphyrins with an extended conjugation framework and a carbazole donor: from molecular design to cosensitization, Angew. Chem. Int. Ed. 53 (2014) 10779-10783.

    4. [4]

      [4] C.J. Li, Y.Q. Feng, X.J. Liu, T.Y. Zhang, The synthesis of porphyrin-anthraquinone dyad via an azo-rearrangement, Chin. Chem. Lett. 22 (2011) 539-542.

    5. [5]

      [5] X.D. Li, Y.C. Zhu, L.J. Yang, Crown ether-appended Fe(III) porphyrin: synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen, Chin. Chem. Lett. 23 (2012) 375-378.

    6. [6]

      [6] J.E. Lyons, P.E. Ellis, H.K. Myers, Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen, J. Catal. 155 (1995) 59-73.

    7. [7]

      [7] D. Dolphin, T.G. Traylor, L.Y. Xie, Polyhaloporphyrins: unusual ligands for metals and metal-catalyzed oxidations, Acc. Chem. Res. 30 (1997) 251-259.

    8. [8]

      [8] W.J. Su, T.M. Cooper, M.C. Brant, Investigation of reverse-saturable absorption in brominated porphyrins, Chem. Mater. 10 (1998) 1212-1213.

    9. [9]

      [9] R. Bonnett, I.A.D. Gale, G.F. Stephenson, The meso-reactivity of porphyrins and related compounds. Part II. Halogenation, J. Chem. Soc. (C) Org. (1966) 1600-1604.

    10. [10]

      [10] D. Mandon, P. Ochenbein, J. Fischer, et al., β-Halogenated-pyrrole porphyrins. Molecular structures of 2,3,7,8,12,13,17,18-octabromo-5,10,15,2'-tetramesitylporphyrin, nickel(II) 2,3,7,8,12,13,17,18-octabromo-5,10,15,2'-tetramesitylporphyrin, and nickel(II) 2,3,7,8,12,13,17,18-octabromo-5,10,15,2'-tetrakis(pentafluorophenyl) porphyrin, Inorg. Chem. 31 (1992) 2044-2049.

    11. [11]

      [11] K.A. Nguyen, P.N. Day, R. Pachter, Effects of halogenation on the ionized and excited states of free-base and zinc porphyrins, J. Chem. Phys. 110 (1999) 9135- 9144.

    12. [12]

      [12] S. Evans, J.R.L. Smith, The oxidation of ethylbenzene and other alkylaromatics by dioxygen catalysed by iron(III) tetrakis(pentafluorophenyl)porphyrin and related iron porphyrins, J. Chem. Soc., Perkin Trans. 2 (2000) 1541-1552.

    13. [13]

      [13] K.A. Nguyen, P.N. Day, R. Pachter, et al., Analysis of absorption spectra of zinc porphyrin, zinc meso-tetraphenylporphyrin, and halogenated derivatives, J. Phys. Chem. A 106 (2002) 10285-10293.

    14. [14]

      [14] J. pyrimidines and pyrimido2015-5-25 β-Fluorinated porphyrins and related compounds: an overview, Eur. J. Org. Chem. 2008 (2008) 417-433.

    15. [15]

      [15] H.Y. Liu, T.S. Lai, L.L. Yeung, C.K. Chang, First synthesis of perfluorinated corrole and its MnO complex, Org. Lett. 5 (2003) 617-620.

    16. [16]

      [16] E. Steene, A. Dey, A. Ghosh, β-Octafluorocorroles, J. Am. Chem. Soc. 125 (2003) 16300-16309.

    17. [17]

      [17] J. Leroy, C. Wakselman, First access to 3,4-difluoro-1H-pyrrole, Tetrahedron Lett. 35 (1994) 8605-8608.

    18. [18]

      [18] A.J.F.N. Sobral, A.M.D.A.R. Gonsalves, The manganese complex of 2,3,7,8,12,13,17,18-octaphenylporphyrin as epoxidation catalyst, J. Porphyrins Phthalocyan. 5 (2001) 428-430.

    19. [19]

      [19] A.J.F.N. Sobral, A.M.D.A.R. Gonsalves, 5,15-Diaryl-β-substituted-porphyrinatomanganese( III) chlorides as probes for structure-activity relationships in porphyrin- based epoxidation catalysts, J. Porphyrins Phthalocyan. 5 (2001) 861-866.

    20. [20]

      [20] C. Paliteiro, A. Sobral, Electrochemical and spectroelectrochemical characterization of meso-tetra-alkyl porphyrins, Electrochim. Acta 50 (2005) 2445-2451.

    21. [21]

      [21] S. Neya, J.S. Quan, M. Hata, T. Hoshino, N. Funasaki, A novel and efficient synthesis of porphine, Tetrahedron Lett. 47 (2006) 8731-8732.

    22. [22]

      [22] M.O. Senge, M. Davis, Porphyrin (porphine)—a neglected parent compound with potential, J. Porphyrins Phthalocyan. 14 (2010) 557-567.

    23. [23]

      [23] M.P. Trova, P.J.F. Gauuan, A.D. Pechulis, et al., Superoxide dismutase mimetics. Part 2: Synthesis and structure-activity relationship of glyoxylate- and glyoxamide- derived metalloporphyrins, Bioorg. Med. Chem. 11 (2003) 2695-2707.

    24. [24]

      [24] X.L. Yang, C.D. Wu, Metalloporphyrinic framework containing multiple pores for highly efficient and selective epoxidation, Inorg. Chem. 53 (2014) 4797-4799.

    25. [25]

      [25] J.S. Lindsey, I.C. Schreiman, H.C. Hsu, P.C. Kearney, A.M. Marguerettaz, Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions, J. Org. Chem. 52 (1987) 827-836.

    26. [26]

      [26] M. Gouterman, Spectra of porphyrins, J. Mol. Spectrosc. 6 (1961) 138-163.

    27. [27]

      [27] E.K. Woller, S.G. DiMagno, 2,3,7,8,12,13,17,18-Octafluoro-5,10,15,2'-tetraarylporphyrins and their zinc complexes: first spectroscopic, electrochemical, and structural characterization of a perfluorinated tetraarylmetalloporphyrin, J. Org. Chem. 62 (1997) 1588-1593.

    28. [28]

      [28] J. Leroy, A. Bondon, L. Toupet, C. Rolando, 2,3,7,8,12,13,17,18-octafluoro- 5,10,15,2'-tetraphenylporphyrin: first synthesis and X-ray crystal structure of the ZnII complex, Chem. Eur. J. 3 (1997) 1890-1893.

    29. [29]

      [29] V.V. Smirnov, E.K. Woller, D. Tatman, S.G. DiMagno, Structure and photophysics of β-octafluoro-meso-tetraarylporphyrins, Inorg. Chem. 40 (2001) 2614-2619.

    30. [30]

      [30] W. Chen, S. Fukuzumi, Change in supramolecular networks through in situ esterification of porphyrins, Eur. J. Inorg. Chem. 2009 (2009) 5494-5505.

    31. [31]

      [31] M.P. Byrn, C.J. Curtis, Y. Hsiou, et al., Porphyrin sponges: conservative of host structure in over 200 porphyrin-based lattice clathrates, J. Am. Chem. Soc. 115 (1993) 9480-9497.

    32. [32]

      [32] P. Bhyrappa, S.R. Wilson, K.S. Suslick, Hydrogen-bonded porphyrinic solids: supramolecular networks of octahydroxy porphyrins, J. Am. Chem. Soc. 119 (1997) 8492-8502.

    33. [33]

      [33] R.K. Kumar, S. Balasubramanian, I. Goldberg, Supramolecular multiporphyrin architecture. coordination polymers and open networks in crystals of tetrakis( 4-cyanophenyl)- and tetrakis(4-nitrophenyl)metalloporphyrin, Inorg. Chem. 37 (1998) 541-552.

    34. [34]

      [34] M. O’Keefe, N.E. Brese, Atom sizes and bond lengths in molecules and crystals, J. Am. Chem. Soc. 113 (1991) 3226-3229.

    35. [35]

      [35] Q.Y. Liu, Q.Y. Jia, J.Q. Zhu, et al., Highly ordered arrangement of meso-tetrakis(4- aminophenyl)porphyrin in self-assembled nanoaggregates via hydrogen bonding, Chin. Chem. Lett. 25 (2014) 752-756.

  • 加载中
    1. [1]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    2. [2]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    3. [3]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    4. [4]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    5. [5]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    8. [8]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    9. [9]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    10. [10]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    13. [13]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    14. [14]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    15. [15]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    16. [16]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    17. [17]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    18. [18]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    19. [19]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    20. [20]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

Metrics
  • PDF Downloads(0)
  • Abstract views(550)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return