Citation: Hua-Hua Wang, Yi-Yu Jiang, Mian HR Mahmood, Hai-Yang Liu, Herman H.Y. Sung, Ian D. Williams, Chi K. Chang. β-Octafl uorinated tetrakis(ethoxycarbonyl)porphyrin[J]. Chinese Chemical Letters, ;2015, 26(5): 529-533. doi: 10.1016/j.cclet.2015.01.026
-
Tetrakis(alkoxycarbonyl)porphyrin and its β-octafluoro-substituted derivatives were synthesized via Lindsey method and transformed to their zinc complexes. Single crystal X-ray structures of corresponding Zn(II) porphyrins revealed that β-octafluorination will give more compactness of porphyrin moieties in the crystal structure owing to the hydrogen bonding interactions involving bfluorine atoms. An unusual six-coordinated Zn(II) was found via intramolecular coordination of oxygen atom of meso-substituents with central Zn(II).
-
Keywords:
- Tetraalkyl porphyrin,
- Zinc,
- Ethyl glyoxylate,
- 3,4-Difluoropyrrole
-
-
[1]
[1] Y.S. Xie, K. Yamaguchi, M. Toganoh, et al., Triply N-confused hexaphyrins: nearinfrared luminescent dyes with a triangular shape, Angew. Chem. Int. Ed. 48 (2009) 5496-5499.
-
[2]
[2] Y.S. Xie, P.C. Wei, X. Li, et al., Macrocycle contraction and expansion of a dihydrosapphyrin isomer, J. Am. Chem. Soc. 135 (2013) 19119-19122.
-
[3]
[3] Y.Q. Wang, B. Chen, W.J. Wu, et al., Efficient solar cells sensitized by porphyrins with an extended conjugation framework and a carbazole donor: from molecular design to cosensitization, Angew. Chem. Int. Ed. 53 (2014) 10779-10783.
-
[4]
[4] C.J. Li, Y.Q. Feng, X.J. Liu, T.Y. Zhang, The synthesis of porphyrin-anthraquinone dyad via an azo-rearrangement, Chin. Chem. Lett. 22 (2011) 539-542.
-
[5]
[5] X.D. Li, Y.C. Zhu, L.J. Yang, Crown ether-appended Fe(III) porphyrin: synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen, Chin. Chem. Lett. 23 (2012) 375-378.
-
[6]
[6] J.E. Lyons, P.E. Ellis, H.K. Myers, Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen, J. Catal. 155 (1995) 59-73.
-
[7]
[7] D. Dolphin, T.G. Traylor, L.Y. Xie, Polyhaloporphyrins: unusual ligands for metals and metal-catalyzed oxidations, Acc. Chem. Res. 30 (1997) 251-259.
-
[8]
[8] W.J. Su, T.M. Cooper, M.C. Brant, Investigation of reverse-saturable absorption in brominated porphyrins, Chem. Mater. 10 (1998) 1212-1213.
-
[9]
[9] R. Bonnett, I.A.D. Gale, G.F. Stephenson, The meso-reactivity of porphyrins and related compounds. Part II. Halogenation, J. Chem. Soc. (C) Org. (1966) 1600-1604.
-
[10]
[10] D. Mandon, P. Ochenbein, J. Fischer, et al., β-Halogenated-pyrrole porphyrins. Molecular structures of 2,3,7,8,12,13,17,18-octabromo-5,10,15,2'-tetramesitylporphyrin, nickel(II) 2,3,7,8,12,13,17,18-octabromo-5,10,15,2'-tetramesitylporphyrin, and nickel(II) 2,3,7,8,12,13,17,18-octabromo-5,10,15,2'-tetrakis(pentafluorophenyl) porphyrin, Inorg. Chem. 31 (1992) 2044-2049.
-
[11]
[11] K.A. Nguyen, P.N. Day, R. Pachter, Effects of halogenation on the ionized and excited states of free-base and zinc porphyrins, J. Chem. Phys. 110 (1999) 9135- 9144.
-
[12]
[12] S. Evans, J.R.L. Smith, The oxidation of ethylbenzene and other alkylaromatics by dioxygen catalysed by iron(III) tetrakis(pentafluorophenyl)porphyrin and related iron porphyrins, J. Chem. Soc., Perkin Trans. 2 (2000) 1541-1552.
-
[13]
[13] K.A. Nguyen, P.N. Day, R. Pachter, et al., Analysis of absorption spectra of zinc porphyrin, zinc meso-tetraphenylporphyrin, and halogenated derivatives, J. Phys. Chem. A 106 (2002) 10285-10293.
-
[14]
[14] J. pyrimidines and pyrimido2015-5-25 β-Fluorinated porphyrins and related compounds: an overview, Eur. J. Org. Chem. 2008 (2008) 417-433.
-
[15]
[15] H.Y. Liu, T.S. Lai, L.L. Yeung, C.K. Chang, First synthesis of perfluorinated corrole and its MnO complex, Org. Lett. 5 (2003) 617-620.
-
[16]
[16] E. Steene, A. Dey, A. Ghosh, β-Octafluorocorroles, J. Am. Chem. Soc. 125 (2003) 16300-16309.
-
[17]
[17] J. Leroy, C. Wakselman, First access to 3,4-difluoro-1H-pyrrole, Tetrahedron Lett. 35 (1994) 8605-8608.
-
[18]
[18] A.J.F.N. Sobral, A.M.D.A.R. Gonsalves, The manganese complex of 2,3,7,8,12,13,17,18-octaphenylporphyrin as epoxidation catalyst, J. Porphyrins Phthalocyan. 5 (2001) 428-430.
-
[19]
[19] A.J.F.N. Sobral, A.M.D.A.R. Gonsalves, 5,15-Diaryl-β-substituted-porphyrinatomanganese( III) chlorides as probes for structure-activity relationships in porphyrin- based epoxidation catalysts, J. Porphyrins Phthalocyan. 5 (2001) 861-866.
-
[20]
[20] C. Paliteiro, A. Sobral, Electrochemical and spectroelectrochemical characterization of meso-tetra-alkyl porphyrins, Electrochim. Acta 50 (2005) 2445-2451.
-
[21]
[21] S. Neya, J.S. Quan, M. Hata, T. Hoshino, N. Funasaki, A novel and efficient synthesis of porphine, Tetrahedron Lett. 47 (2006) 8731-8732.
-
[22]
[22] M.O. Senge, M. Davis, Porphyrin (porphine)—a neglected parent compound with potential, J. Porphyrins Phthalocyan. 14 (2010) 557-567.
-
[23]
[23] M.P. Trova, P.J.F. Gauuan, A.D. Pechulis, et al., Superoxide dismutase mimetics. Part 2: Synthesis and structure-activity relationship of glyoxylate- and glyoxamide- derived metalloporphyrins, Bioorg. Med. Chem. 11 (2003) 2695-2707.
-
[24]
[24] X.L. Yang, C.D. Wu, Metalloporphyrinic framework containing multiple pores for highly efficient and selective epoxidation, Inorg. Chem. 53 (2014) 4797-4799.
-
[25]
[25] J.S. Lindsey, I.C. Schreiman, H.C. Hsu, P.C. Kearney, A.M. Marguerettaz, Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions, J. Org. Chem. 52 (1987) 827-836.
-
[26]
[26] M. Gouterman, Spectra of porphyrins, J. Mol. Spectrosc. 6 (1961) 138-163.
-
[27]
[27] E.K. Woller, S.G. DiMagno, 2,3,7,8,12,13,17,18-Octafluoro-5,10,15,2'-tetraarylporphyrins and their zinc complexes: first spectroscopic, electrochemical, and structural characterization of a perfluorinated tetraarylmetalloporphyrin, J. Org. Chem. 62 (1997) 1588-1593.
-
[28]
[28] J. Leroy, A. Bondon, L. Toupet, C. Rolando, 2,3,7,8,12,13,17,18-octafluoro- 5,10,15,2'-tetraphenylporphyrin: first synthesis and X-ray crystal structure of the ZnII complex, Chem. Eur. J. 3 (1997) 1890-1893.
-
[29]
[29] V.V. Smirnov, E.K. Woller, D. Tatman, S.G. DiMagno, Structure and photophysics of β-octafluoro-meso-tetraarylporphyrins, Inorg. Chem. 40 (2001) 2614-2619.
-
[30]
[30] W. Chen, S. Fukuzumi, Change in supramolecular networks through in situ esterification of porphyrins, Eur. J. Inorg. Chem. 2009 (2009) 5494-5505.
-
[31]
[31] M.P. Byrn, C.J. Curtis, Y. Hsiou, et al., Porphyrin sponges: conservative of host structure in over 200 porphyrin-based lattice clathrates, J. Am. Chem. Soc. 115 (1993) 9480-9497.
-
[32]
[32] P. Bhyrappa, S.R. Wilson, K.S. Suslick, Hydrogen-bonded porphyrinic solids: supramolecular networks of octahydroxy porphyrins, J. Am. Chem. Soc. 119 (1997) 8492-8502.
-
[33]
[33] R.K. Kumar, S. Balasubramanian, I. Goldberg, Supramolecular multiporphyrin architecture. coordination polymers and open networks in crystals of tetrakis( 4-cyanophenyl)- and tetrakis(4-nitrophenyl)metalloporphyrin, Inorg. Chem. 37 (1998) 541-552.
-
[34]
[34] M. O’Keefe, N.E. Brese, Atom sizes and bond lengths in molecules and crystals, J. Am. Chem. Soc. 113 (1991) 3226-3229.
-
[35]
[35] Q.Y. Liu, Q.Y. Jia, J.Q. Zhu, et al., Highly ordered arrangement of meso-tetrakis(4- aminophenyl)porphyrin in self-assembled nanoaggregates via hydrogen bonding, Chin. Chem. Lett. 25 (2014) 752-756.
-
[1]
-
-
[1]
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
-
[2]
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
-
[3]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[4]
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
-
[5]
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
-
[6]
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
-
[7]
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
-
[8]
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
-
[9]
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
-
[10]
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
-
[11]
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
-
[12]
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
-
[13]
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
-
[14]
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
-
[15]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[16]
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
-
[17]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[18]
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
-
[19]
Gaofeng WANG , Shuwen SUN , Yanfei ZHAO , Lixin MENG , Bohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479
-
[20]
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(550)
- HTML views(4)