Citation: Shi Jin, Robert T. Kennedy. New developments in Western blot technology[J]. Chinese Chemical Letters, ;2015, 26(4): 416-418. doi: 10.1016/j.cclet.2015.01.021 shu

New developments in Western blot technology

  • Corresponding author: Robert T. Kennedy, 
  • Received Date: 4 November 2014
    Available Online: 9 January 2015

    Fund Project:

  • Western blotting is a highly valued method for protein identification and relative quantitation in complex samples. It combines size-based electrophoretic separation with immunoaffinity to identify specific proteins. This technique remains popular and has become a workhorse in biochemical research and clinical laboratories. Despite its utility and popularity, this method has many limitations including slow analysis, incompatibility with limited sample application, low throughput and low information content. Recently there has been significant success in improving different aspects of Western blotting. In this review, we provide an overview of the developments in the area of improving conventional Western blotting methods with a focus on recent developments in microfluidic Western blotting. We overview different separation platforms, and discuss studies on protein transfer methods as well as protein immobilization methods and chemistries. We also describe integrated miniaturized platforms that can perform rapid separations and immunodetections.
  • 加载中
    1. [1]

      [1] H. Towbin, T. Staehelin, J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. U. S. A. 76 (1979) 4350-4354.

    2. [2]

      [2] W.N. Burnette, Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A, Anal. Biochem. 112 (1981) 195-203.

    3. [3]

      [3] http://www.western-blot.us/applications-of-western-blotting/ applications-in-medical-diagnosis.

    4. [4]

      [4] http://www.cdc.gov/lyme/diagnosistesting/LabTest/TwoStep/WesternBlot/ index.html.

    5. [5]

      [5] J.A. Reynolds, C. Tanford, The gross conformation of protein-sodium dodecyl sulfate complexes, J. Biol. Chem. 245 (1970) 5161-5165.

    6. [6]

      [6] Q.H. Ru, Y.M. Wang, G.A. Luo, Studies on human immunoglobulin G from GBS patient (III)-the determination of molecular weight of human immunoglobulin G by capillary SDS gel electrophoresis, Chin. Chem. Lett. 10 (1999) 55-58.

    7. [7]

      [7] G.J. Anderson, C.M. Cipolla, R.T. Kennedy, Western blotting using capillary electrophoresis, Anal. Chem. 83 (2011) 1350-1355.

    8. [8]

      [8] H.Y. Zhang, R.M. Caprioli, Capillary electrophoresis combined with matrixassisted laser desorption/ionization mass spectrometry; continuous sample deposition on a matrix-precoated membrane target, J. Mass Spectrom. 31 (1996) 1039-1046.

    9. [9]

      [9] J.J. Lu, Z.F. Zhu, W. Wang, S.R. Liu, Coupling sodium dodecyl sulfate-capillary polyacrylamide gel electrophoresis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry via a poly(tetrafluoroethylene) membrane, Anal. Chem. 83 (2011) 1784-1790.

    10. [10]

      [10] R.A. O'Neill, A. Bhamidipati, X.H. Bi, et al., Isoelectric focusing technology quantifies protein signaling in 25 cells, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 16153-16158.

    11. [11]

      [11] A.J. Hughes, A.E. Herr, Microfluidic western blotting, Proc. Natl. Acad. Sci. U. S. A. 109 (2013) 21450-21455.

    12. [12]

      [12] L. Bousse, S. Mouradian, A. Minalla, et al., Protein sizing on a microchip, Anal. Chem. 73 (2001) 1207-1212.

    13. [13]

      [13] D.P. Wu, J.H. Qin, B.C. Lin, Electrophoretic separations on microfluidic chips, J. Chromatogr. A 1184 (2008) 542-559.

    14. [14]

      [14] M. He, A.E. Herr, Polyacrylamide gel photopatterning enables automated protein immunoblotting in a two-dimensional microdevice, J. Am. Chem. Soc. 132 (2010) 2512-2513.

    15. [15]

      [15] M. He, A.E. Herr, Microfluidic polyacrylamide gel electrophoresis with in situ immunoblotting for native protein analysis, Anal. Chem. 81 (2009) 8177-8184.

    16. [16]

      [16] S.Q. Tia, M. He, D. Kim, A.E. Herr, Multianalyte on-chip native western blotting, Anal. Chem. 83 (2011) 3581-3588.

    17. [17]

      [17] D. Kim, A.E. Herr, Protein immobilization techniques for microfluidic assays, Biomicrofluidics 7 (2013) 041501.

    18. [18]

      [18] A.J. Hughes, R.K. Lin, D.M. Peehl, A.E. Herr, Microfluidic integration for automated targeted proteomic assays, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 5972-5977.

    19. [19]

      [19] S. Jin, G.J. Anderson, R.T. Kennedy, Western blotting using microchip electrophoresis interfaced to a protein capture membrane, Anal. Chem. 85 (2013) 6073-6079.

    20. [20]

      [20] W.Y. Pan, W. Chen, X.Y. Jiang, Microfluidic western blot, Anal. Chem. 82 (2010) 3974-3976.

    21. [21]

      [21] A.J. Hughes, D.P. Spelke, Z.C. Xu, et al., Single-cell western blotting, Nat. Methods 11 (2014) 749-755.

    22. [22]

      [22] eBioscience Sheds Western Blot Line, GEN News Highlights [Online], 2012.

    23. [23]

      [23] Rockland Immunochemicals Acquires TrueBlot(R) Product Line, Business Wire [Online], 2012.

    24. [24]

      [24] http://www.genomics.agilent.com/en/Bioanalyzer-System/ 2100-Bioanalyzer-Instruments/-System.

    25. [25]

      [25] https://www.emdmillipore.com/US/en/product/SNAP-i.d.%C2%AE-2. 0-Protein-Detection-System,MM_NF-C73105.

    26. [26]

      [26] http://www.lifetechnologies.com/us/en/home/life-science/ protein-expression-and-analysis/western-blotting.html.

    27. [27]

      [27] http://www.proteinsimple.com/.

  • 加载中
    1. [1]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    2. [2]

      Gaowa XingYuting ShangXiaorui WangZengnan WuQiang ZhangJiebing AiQiaosheng PuLing Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491

    3. [3]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    4. [4]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    5. [5]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    6. [6]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

Metrics
  • PDF Downloads(0)
  • Abstract views(493)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return