Citation: Joseph Jankolovits, Jeff W. Kampf, Vincent L. Pecoraro. Assembly of zinc metallacrowns with an α-amino hydroxamic acid ligand[J]. Chinese Chemical Letters, ;2015, 26(4): 444-448. doi: 10.1016/j.cclet.2015.01.017 shu

Assembly of zinc metallacrowns with an α-amino hydroxamic acid ligand

  • Corresponding author: Vincent L. Pecoraro, 
  • Received Date: 15 December 2014
    Available Online: 25 December 2014

    Fund Project:

  • In the assembly of metallacrowns for molecular recognition, luminescence, and molecular magnetism applications, substituting the ring ion can have profound effects on the structure, stability, and physical properties of the inorganic macrocycle. The assembly of Zn(Ⅱ) metallacrowns with an α-amino hydroxamic acid ligand (pheHA) was investigated to compare the assembly behavior with the well studied metallacrowns containing Cu(Ⅱ) and Ni(Ⅱ). Electrospray ionization mass spectrometry reveals that the benchmark species Zn5(pheHA)42+ and LnZn5(pheHA)53+ assemble in pyridine, which is consistent with the behavior of Cu(Ⅱ) and Ni(Ⅱ). A LnZn4(pheHA)43+ species is also observed in a 1:1 DMF-pyridine mixture. An unprecedented La(Ⅲ)[16-MCZn(Ⅱ),pheHA,HpheHA-6]5+ complex was crystallographically characterized that possesses unusual C2 symmetry. These results provide insights into the design of functional metallacrowns through ring ion substitution.
  • 加载中
    1. [1]

      [1] G. Mezei, C.M. Zaleski, V.L. Pecoraro, Structural and functional evolution of metallacrowns, Chem. Rev. 107 (2007) 4933-5003.

    2. [2]

      [2] V.L. Pecoraro, A.J. Stemmler, B.R. Gibney, et al., Metallacrowns: a new class of molecular recognition agents, Prog. Inorg. Chem. 45 (1997) 83-177.

    3. [3]

      [3] C.M. Zaleski, E.C. Depperman, J.W. Kampf, M.L. Kirk, V.L. Pecoraro, Synthesis, structure, and magnetic properties of a large lanthanide-transition-metal singlemolecule magnet, Angew. Chem. Int. Ed. 43 (2004) 3912-3914.

    4. [4]

      [4] C.M. Zaleski, J.W. Kampf, T. Mallah, M.L. Kirk, V.L. Pecoraro, Assessing the slow magnetic relaxation behavior of LnIII4MnIII6 metallacrowns, Inorg. Chem. 46 (2007) 1954-1956.

    5. [5]

      [5] C.M. Zaleski, S. Tricard, E.C. Depperman, et al., Single molecule magnet behavior of a pentanuclear Mn-based metallacrown complex: solid state and solution magnetic studies, Inorg. Chem. 50 (2011) 11348-11352.

    6. [6]

      [6] T.T. Boron, J.W. Kampf, V.L. Pecoraro, A mixed 3d-4f 14-metallacrown-5 complex that displays slow magnetic relaxation through geometric control of magnetoanisotropy, Inorg. Chem. 49 (2010) 9104-9106.

    7. [7]

      [7] C.M. Zaleski, E.C. Depperman, J.W. Kampf, M.L. Kirk, V.L. Pecoraro, Using LnIII[15-MCCuII(N)(S)-pheHA-5]3+ complexes to construct chiral single-molecule magnets and chains of single-molecule magnets, Inorg. Chem. 45 (2006) 10022-10024.

    8. [8]

      [8] J. Jankolovits, C.M. Andolina, J.W. Kampf, K.N. Raymond, V.L. Pecoraro, Assembly of near-infrared luminescent lanthanide host (host-guest) complexes with a metallacrown sandwich motif, Angew. Chem. Int. Ed. 50 (2011) 9660-9664.

    9. [9]

      [9] E.R. Trivedi, S.V. Eliseeva, J. Jankolovits, et al., Highly emitting near-infrared lanthanide "encapsulated sandwich" metallacrown complexes with excitation shifted toward lower energy, J. Am. Chem. Soc. 136 (2014) 1526-1534.

    10. [10]

      [10] M. Moon, I. Kim, M.S. Lah, Three-dimensional framework constructed using nanometer-sized metallamacrocycle as a secondary building unit, Inorg. Chem. 39 (2000) 2710-2711.

    11. [11]

      [11] C.S. Lim, J. Jankolovits, J.W. Kampf, V.L. Pecoraro, Chiral metallacrown supramolecular compartments that template nanochannels: self-assembly and guest absorption, Chem. Asian J. 5 (2010) 46-49.

    12. [12]

      [12] A.V. Pavlishchuk, S.V. Kolotilov, M. Zeller, et al., Magnetic and sorption properties of supramolecular systems based on pentanuclear copper(Ⅱ) 12-metallacrown-4 complexes and isomeric phthalates: structural modeling of the different stages of alcohol sorption, Eur. J. Inorg. Chem. 2011 (2011) 4826-4836.

    13. [13]

      [13] J.T. Grant, J. Jankolovits, V.L. Pecoraro, Enhanced guest affinity and enantioselectivity through variation of the Gd3+[15-Metallacrown-5] side chain, Inorg. Chem. 51 (2012) 8034-8041.

    14. [14]

      [14] M. Tegoni, M. Tropiano, L. Marchio, Thermodynamics of binding of carboxylates to amphiphilic Eu3+/Cu2+ metallacrown, Dalton Trans. (2009) 6705-6708.

    15. [15]

      [15] M. Tegoni, M. Remelli, Metallacrowns of copper(Ⅱ) and aminohydroxamates: thermodynamics of self assembly and host-guest equilibria, Coord. Chem. Rev. 256 (2012) 289-315.

    16. [16]

      [16] A.D. Cutland, J.A. Halfen, J.W. Kampf, V.L. Pecoraro, Chiral 15-metallacrown-5 complexes differentially bind carboxylate anions, J. Am. Chem. Soc. 123 (2001) 6211-6212.

    17. [17]

      [17] J.C.-G. Bunzli, C. Piguet, Lanthanide-containing molecular and supramolecular polymetallic functional assemblies, Chem. Rev. 102 (2002) 1897-1928.

    18. [18]

      [18] N. Sabbatini, S. Perathoner, G. Lattanzi, S. Dellonte, V. Balzani, Electron- and energy-transfer processes involving excited states of lanthanide complexes: evidence for Inner-sphere and Outer-sphere mechanisms, Inorg. Chem. 27 (1988) 1628-1633.

    19. [19]

      [19] A.J. Stemmler, J.W. Kampf, M.L. Kirk, B.H. Atasi, V.L. Pecoraro, The preparation, characterization, and magnetism of copper 15-metallacrown-5 lanthanide complexes, Inorg. Chem. 38 (1999) 2807-2817.

    20. [20]

      [20] M. Tegoni, M. Furlotti, M. Tropiano, C.-S. Lim, V.L. Pecoraro, Thermodynamics of core metal replacement and self-assembly of Ca2+ 15-metallacrown-5, Inorg. Chem. 49 (2010) 5190-5201.

    21. [21]

      [21] F. Dallavalle, M. Remelli, F. Sansone, D. Bacco, M. Tegoni, Thermodynamics of selfassembly of copper(Ⅱ) 15-metallacrown-5 of Eu(III) or Gd(III) with (S)-a-Alaninehydroxamic acid in aqueous solution, Inorg. Chem. 49 (2010) 1761-1772.

    22. [22]

      [22] S.H. Seda, J. Janczak, J. Lisowski, Synthesis and structural characterisation of nickel 15-metallacrown-5 complexes with lanthanide(III) and lead(Ⅱ) ions: influence of the central metal ion size on the spin state of peripheral nickel(Ⅱ) ions, Inorg. Chem. Commun. 9 (2006) 792-796.

    23. [23]

      [23] Metallacrown nomenclature follows the formula M(N)[# ring atoms-MCM0(N0), L-# ring oxygens](anions) (coordinated ligands) where M is the central ion, N is the oxidation state of the central metal, MC is the abbreviation of metallacrown, M0 is the ring ion, N0 is the oxidation state of the ring ion, and L is the ligand.

    24. [24]

      [24] J. Jankolovits, J.W. Kampf, V.L. Pecoraro, Insight into the structural versatility of the Ln(III)[15-metallacrown-5] platform by comparing analogs with Ni(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) ring ions, Polyhedron 52 (2013) 491-499.

    25. [25]

      [25] J. Jankolovits, J.W. Kampf, V.L. Pecoraro, Solvent dependent assembly of lanthanide metallacrowns using building blocks with incompatible symmetry preferences, Inorg. Chem. 53 (2014) 7534-7546.

    26. [26]

      [26] A.J. Stemmler, J.W. Kampf, V.L. Pecoraro, A planar[15]metallacrown-5 that selectively binds the uranyl cation, Angew. Chem. Int. Ed. Engl. 35 (1996) 2841-2843.

    27. [27]

      [27] R. Chakrabarty, P.S. Mukherjee, P.J. Stang, Supramolecular coordination: selfassembly of finite two- and three-dimensional ensembles, Chem. Rev. 111 (2011) 6810-6918.

    28. [28]

      [28] A.J. Stemmler, J.W. Kampf, V.L. Pecoraro, Synthesis and crystal structure of the first inverse 12-metallacrown-4, Inorg. Chem. 34 (1995) 2271-2272.

    29. [29]

      [29] M. Careri, F. Dallavalle, M. Tegoni, I. Zagnoni, Pentacopper(Ⅱ) 12-metallacrown-4 complexes with a- and b-aminohydroxamic acids in aqueous solution: a reinvestigation, J. Inorg. Biochem. 93 (2003) 174-180.

    30. [30]

      [30] M. Tegoni, M. Remelli, D. Bacco, L. Marchio, F. Dallavalle, Copper(Ⅱ) 12-metallacrown- 4 complexes of a-, b- and g-aminohydroxamic acids: a comparative thermodynamic study in aqueous solution, Dalton Trans. (2008) 2693-2701.

    31. [31]

      [31] L. Marchio, N. Marchetti, C. Atzeri, V. Borghesani, M. Remelli, M. Tegoni, The peculiar behavior of Picha in the formation of metallacrown complexes with Cu(Ⅱ), Ni(Ⅱ) and Zn(Ⅱ) in aqueous solution, Dalton Trans. 44 (2015) 3237-3250.

    32. [32]

      [32] D. Bacco, V. Bertolasi, F. Dallavalle, et al., Metallacrowns of Ni(Ⅱ) with a-aminohydroxamic acids in aqueous solution: beyond a 12-MC-4, an unexpected (vacant?) 15-MC-5, Dalton Trans. 40 (2011) 2491-2501.

    33. [33]

      [33] J. Jankolovits, J.W. Kampf, V.L. Pecoraro, Isolation of elusive tetranuclear and pentanuclear M(Ⅱ)-hydroximate intermediates in the assembly of lanthanide [15-metallacrown-5] complexes, Inorg. Chem. 52 (2013) 5063-5076.

    34. [34]

      [34] J. Jankolovits, C.-S. Lim, G. Mezei, J.W. Kampf, V.L. Pecoraro, Influencing the size and anion selectivity of dimeric Ln3+[15-metallacrown-5] compartments through systematic variation of the host side chains and central metal, Inorg. Chem. 51 (2012) 4527-4538.

    35. [35]

      [35] Bruker Analytical X-ray, Saint Plus v 7.60, Madison, WI, 2009.

    36. [36]

      [36] G.M. Sheldrick, Program for Empirical Absorbtion Correction of Area Detector Data, Gottingen, Germany, 2008.

    37. [37]

      [37] G.M. Sheldrick, A short history of SHELX, Acta Crystallogr. A64 (2008) 112-122.

    38. [38]

      [38] F. Dallavalle, M. Tegoni, Speciation and structure of copper(Ⅱ) complexes with (s)- phenylalanine- and (s)-tryptophanhydroxamic acids in methanol/water solution: a combined potentiometric, spectrophotometric, CD and ESI-MS study, Polyhedron 20 (2001) 2697-2704.

    39. [39]

      [39] M. Tegoni, F. Dallavalle, B. Belosi, M. Remelli, Unexpected formation of a copper(Ⅱ) 12-metallacrown-4 with (S)-glutamic-gamma-hydroxamic acid: a thermodynamic and spectroscopic study in aqueous solution, Dalton Trans. (2004) 1329-1333.

    40. [40]

      [40] M. Remelli, D. Bacco, F. Dallavalle, et al., Stoichiometric diversity of Ni(Ⅱ) metallacrowns with b-alaninehydroxamic acid in aqueous solution, Dalton Trans. 42 (2013) 8018-8025.

    41. [41]

      [41] M. Tegoni, L. Ferretti, F. Sansone, et al., Synthesis, solution thermodynamics, and X-ray study of CuII [12]metallacrown-4 with GABA hydroxamic acid: an unprecedented crystal structure of a [12]MC-4 with a g-Aminohydroxamate, Chem. Eur. J. 13 (2007) 1300-1308.

    42. [42]

      [42] B. Kurzak, E. Farkas, T. Glowiak, H. Kozlowski, J. Chem. Soc. Dalton Trans. (1991) 163-167.

    43. [43]

      [43] M.S. Lah, V.L. Pecoraro, Isolation and characterization of {MnII[MnIII(salicylhydroximate)] 4(acetate)2(DMF)6}.cntdot.2DMF: an inorganic analog of M2+(12- crown-4), J. Am. Chem. Soc. 111 (1989) 7258-7259.

    44. [44]

      [44] B.R. Gibney, D.P. Kessissoglou, J.W. Kampf, V.L. Pecoraro, Copper(Ⅱ) 12-metallacrown- 4: synthesis, structure, ligand variability, and solution dynamics in the 12-MC-4 structural motif, Inorg. Chem. 33 (1994) 4840-4849.

    45. [45]

      [45] A.J. Stemmler, A. Barwinski, M.J. Baldwin, V. Young, V.L. Pecoraro, Facile preparation of face differentiated, chiral 15-metallacrown-5 complexes, J. Am. Chem. Soc. 118 (1996) 11962-11963.

    46. [46]

      [46] J.A. Halfen, J.J. Bodwin, V.L. Pecoraro, Preparation and characterization of chiral copper 12-metallacrown-4 complexes, inorganic analogues of tetraphenylporphyrinatocopper( II), Inorg. Chem. 37 (1998) 5416-5417.

    47. [47]

      [47] R. Codd, Traversing the coordination chemistry and chemical biology of hydroxamic acids, Coord. Chem. Rev. 252 (2008) 1387-1408.

    48. [48]

      [48] A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, Synthesis, structure, and spectroscopic properties of copper(Ⅱ) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-20-yl)-2,6-dithiaheptane]copper(Ⅱ) perchlorate, J. Chem. Soc. Dalton Trans. (1984) 1349-1356.

    49. [49]

      [49] M.K. Sharma, P. Lama, P.K. Bharadwaj, Reversible single-crystal to single-crystal exchange of guests in a seven-fold interpenetrated diamondoid coordination polymer, Cryst. Growth Des. 11 (2011) 1411-1416.

    50. [50]

      [50] B.J. Holliday, C.A. Mirkin, Strategies for the construction of supramolecular compounds through coordination chemistry, Angew. Chem. Int. Ed. 40 (2001) 2022-2043.

  • 加载中
    1. [1]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    4. [4]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    5. [5]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    6. [6]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    7. [7]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    8. [8]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    9. [9]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    10. [10]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    11. [11]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    12. [12]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    13. [13]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    14. [14]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    15. [15]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    16. [16]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    17. [17]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    18. [18]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    19. [19]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    20. [20]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

Metrics
  • PDF Downloads(0)
  • Abstract views(476)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return