Citation:
Dong-Hai Yu, Jing-Na Shao, Rong-Xing He, Ming Li. Mechanism of trifl uoromethylation reactions with well-defi ned NHC copper trifl uoromethyl complexes and iodobenzene: A computational exploration[J]. Chinese Chemical Letters,
;2015, 26(5): 564-566.
doi:
10.1016/j.cclet.2014.12.017
-
Computational calculation was performed to investigate the mechanism of trifluoromethylation reactions of iodobenzene with well-defined N-heterocyclic carbene (NHC)-supported CuI trifluoromethyl complexes. Four proposed reaction pathways, namely σ-bond metathesis (BM), concerted oxidative addition-reductive elimination (OARE), iodine atomtransfer (IAT) and single-electron transfer (SET), have been computed by density functional theory (DFT). The result indicated that the concerted OARE mechanism is favored among the four reaction pathways, suggesting the trifluoromethylation may occur via concerted OARE mechanism involving Ar-X oxidative addition to the Cu(I) center as the rate determining step.
-
-
-
[1]
[1] (a) D. O’Hagan, Understanding organofluorine chemistry. An introduction to the C-F bond, Chem. Soc. Rev. 37 (2008) 308-319;
-
[2]
(b) K. Mü ller, C. Faeh, F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition, Science 317 (2007) 1881-1886;
-
[3]
(c) J. Wang, M. Sánchez-Roselló, J.L. Aceña, et al., Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade(2001-2011), Chem. Rev. 114 (2014) 2432-2506;
-
[4]
(d) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Fluorine in medicinalchemistry, Chem. Soc. Rev. 37 (2008) 320-330;
-
[5]
(e) C.H. Ge, R. Zhang, P. Fan, et al., Supramolecular assembly of 2,4,5-trifluorobenzoatecomplex based on weak interactions involving fluorine atoms, Chin.Chem. Lett. 24 (2013) 73-75;
-
[6]
(f) X.J. Song, P. Yang, H. Gao, et al., Facile synthesis and antitumor activity of novel2-trifluoromethylthieno[2,3-d]pyrimidine derivatives, Chin. Chem. Lett. 25(2014) 1006-1010.
-
[7]
[2] (a) F. Qing, Recent advances of trifluoromethylation, Chin. J. Org. Chem. 32 (2012)815-824;
-
[8]
(b) J.A. Ma, D. Cahard, Asymmetric fluorination, trifluoromethylation, and perfluoroalkylationreactions, Chem. Rev. 108 (2008) PR1-PR43;
-
[9]
(c) J. Nie, H.C. Guo, D. Cahard, J.A. Ma, Asymmetric construction of stereogeniccarbon centers featuring a trifluoromethyl group from prochiral trifluoromethylatedsubstrates, Chem. Rev. 111 (2010) 455-529;
-
[10]
(d) S. Barata-Vallejo, A. Postigo, Metal-mediated radical perfluoroalkylation oforganic compounds, Coord. Chem. Rev. 257 (2013) 3051-3069.
-
[11]
[3] (a) O.A. Tomashenko, V.V. Grushin, Aromatic trifluoromethylation with metalcomplexes, Chem. Rev. 111 (2011) 4475-4521;
-
[12]
(b) S. Roy, B.T. Gregg, G.W. Gribble, V.D. Le, S. Roy, Trifluoromethylation of aryland heteroaryl halides, Tetrahedron 67 (2011) 2161-2195;
-
[13]
(c) C.P. Zhang, Q.Y. Chen, Y. Guo, J.C. Xiao, Y.C. Gu, Difluoromethylation andtrifluoromethylation reagents derived from tetrafluoroethane β-sultone: synthesis,reactivity and applications, Coord. Chem. Rev. 261 (2014) 28-72;
-
[14]
(d) T. Liang, C.N. Neumann, T. Ritter, Introduction of fluorine and fluorine-containingfunctional groups, Angew. Chem. Int. Ed. 52 (2013) 8214-8264.
-
[15]
[4] (a) V.C.R. McLoughlin, J. Thrower, A route to fluoroalkyl-substituted aromaticcompounds involving fluoroalkylcopper intermediates, Tetrahedron 25 (1969)5921-5940;
-
[16]
(b) Q.Y. Chen, S.W. Wu, Methyl fluorosulphonyldifluoroacetate; a new trifluoromethylatingagent, J. Chem. Soc., Chem. Commun. (1989) 705-706;
-
[17]
(c) M. Oishi, H. Kondo, H. Amii, Aromatic trifluoromethylation catalytic in copper,Chem. Commun. (2009) 1909-1911.
-
[18]
[5] D.M. Wiemers, D.J. Burton, Pregeneration, spectroscopic detection and chemicalreactivity of (trifluoromethyl)copper, an elusive and complex species, J. Am.Chem. Soc. 108 (1986) 832-834.
-
[19]
[6] A.I. Konovalov, A. Lishchynskyi, V.V. Grushin, Mechanism of trifluoromethylationof aryl halides with CuCF3 and the ortho effect, J. Am. Chem. Soc. 136 (2014)13410-13425.
-
[20]
[7] G.G. Dubinina, H. Furutachi, D.A. Vicic, Active trifluoromethylating agents fromwell-defined copper(I)-CF3 complexes, J. Am. Chem. Soc. 130 (2008) 8600-8601.
-
[21]
[8] Y. Zhao, D.G. Truhlar, A new local density functional for main-group thermochemistry,transition metal bonding, thermochemical kinetics, and noncovalentinteractions, J. Chem. Phys. 125 (2006) 194101.
-
[22]
[9] (a) W.J. Hehre, R. Ditchfield, J.A. Pople, Self-consistent molecular orbital methods.XII. Further extensions of Gaussian-type basis sets for use in molecular orbitalstudies of organic molecules, J. Chem. Phys. 56 (1972) 2257-2261;
-
[23]
(b) P.C. Hariharan, J.A. Pople, The influence of polarization functions on molecularorbital hydrogenation energies, Theor. Chim. Acta 28 (1973) 213-222;
-
[24]
(c) M.M. Francl, W.J. Pietro, W.J. Hehre, et al., Self-consistent molecular orbitalmethods. XXIII. A polarization-type basis set for second-row elements, J. Chem.Phys. 77 (1982) 3654-3665.
-
[25]
[10] (a) P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations.Potentials for K to Au including the outermost core orbitals, J. Chem. Phys.82 (1985) 299-310;
-
[26]
(b) W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations.Potentials for main group elements Na to Bi, J. Chem. Phys. 82 (1985) 284-298;
-
[27]
(c) P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1985)270-283.
-
[28]
[11] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision D, Gaussian,Inc., Wallingford, CT, 2013.
-
[29]
[12] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based onsolute electron density and on a continuum model of the solvent defined by thebulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (2009)6378-6396.
-
[30]
[13] (a) G. Lefèvre, G. Franc, A. Tlili, et al., Contribution to the mechanism of coppercatalyzedC-N and C-O bond formation, Organometallics 31 (2012) 7694-7707;
-
[31]
(b) I.P. Beletskaya, A.V. Cheprakov, The complementary competitors: palladiumand copper in C-N cross-coupling reactions, Organometallics 31 (2012) 7753-7808;
-
[32]
(c) G.O. Jones, P. Liu, K.N. Houk, S.L. Buchwald, Computational explorations ofmechanisms and ligand-directed selectivities of copper-catalyzed Ullmann-typereactions, J. Am. Chem. Soc. 132 (2010) 6205-6213;
-
[33]
(d) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Aryl-aryl bondformation one century after the discovery of the Ullmann reaction, Chem. Rev.102 (2002) 1359-1470;
-
[34]
(e) Z. Weng, W. He, C. Chen, et al., An air-stable copper reagent for nucleophilictrifluoromethylthiolation of aryl halides, Angew. Chem. Int. Ed. 52 (2013) 1548-1552.
-
[35]
[14] (a) A. Houmam, Electron transfer initiated reactions: bond formation and bonddissociation, Chem. Rev. 108 (2008) 2180-2237;
-
[36]
(b) C.Y. Lin, M.L. Coote, A. Gennaro, K. Matyjaszewski, Ab initio evaluation of thethermodynamic and electrochemical properties of alkyl halides and radicals andtheir mechanistic implications for atom transfer radical polymerization, J. Am.Chem. Soc. 130 (2008) 12762-12774.
-
[1]
-
-
-
[1]
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
-
[2]
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
-
[3]
Boqiang Wang , Yongzhuo Xu , Jiajia Wang , Muyang Yang , Guo-Jun Deng , Wen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502
-
[4]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[5]
Kun Tang , Fen Su , Shijie Pan , Fengfei Lu , Zhongfu Luo , Fengrui Che , Xingxing Wu , Yonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495
-
[6]
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
-
[7]
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
-
[8]
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
-
[9]
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
-
[10]
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
-
[11]
Xinlong Han , Huiying Zeng , Chao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817
-
[12]
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
-
[13]
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
-
[14]
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
-
[15]
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
-
[16]
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
-
[17]
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
-
[18]
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
-
[19]
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
-
[20]
Le Zhang , Hui-Yu Xie , Xin Li , Li-Ying Sun , Ying-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(556)
- HTML views(8)