Citation: Dong-Hai Yu, Jing-Na Shao, Rong-Xing He, Ming Li. Mechanism of trifl uoromethylation reactions with well-defi ned NHC copper trifl uoromethyl complexes and iodobenzene: A computational exploration[J]. Chinese Chemical Letters, ;2015, 26(5): 564-566. doi: 10.1016/j.cclet.2014.12.017 shu

Mechanism of trifl uoromethylation reactions with well-defi ned NHC copper trifl uoromethyl complexes and iodobenzene: A computational exploration

  • Corresponding author: Ming Li, 
  • Received Date: 30 September 2014
    Available Online: 8 December 2014

    Fund Project: This work was supported by National Natural Science Foundation of China (Nos. 21073144, 21173169) (Nos. 21073144, 21173169)the Fundamental Research Funds for the Central Universities (No. XDJK2013A008). Computing resources were provided by the National Supercomputing Center of China in Shenzhen. (No. XDJK2013A008)

  • Computational calculation was performed to investigate the mechanism of trifluoromethylation reactions of iodobenzene with well-defined N-heterocyclic carbene (NHC)-supported CuI trifluoromethyl complexes. Four proposed reaction pathways, namely σ-bond metathesis (BM), concerted oxidative addition-reductive elimination (OARE), iodine atomtransfer (IAT) and single-electron transfer (SET), have been computed by density functional theory (DFT). The result indicated that the concerted OARE mechanism is favored among the four reaction pathways, suggesting the trifluoromethylation may occur via concerted OARE mechanism involving Ar-X oxidative addition to the Cu(I) center as the rate determining step.
  • 加载中
    1. [1]

      [1] (a) D. O’Hagan, Understanding organofluorine chemistry. An introduction to the C-F bond, Chem. Soc. Rev. 37 (2008) 308-319;

    2. [2]

      (b) K. Mü ller, C. Faeh, F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition, Science 317 (2007) 1881-1886;

    3. [3]

      (c) J. Wang, M. Sánchez-Roselló, J.L. Aceña, et al., Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade(2001-2011), Chem. Rev. 114 (2014) 2432-2506;

    4. [4]

      (d) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Fluorine in medicinalchemistry, Chem. Soc. Rev. 37 (2008) 320-330;

    5. [5]

      (e) C.H. Ge, R. Zhang, P. Fan, et al., Supramolecular assembly of 2,4,5-trifluorobenzoatecomplex based on weak interactions involving fluorine atoms, Chin.Chem. Lett. 24 (2013) 73-75;

    6. [6]

      (f) X.J. Song, P. Yang, H. Gao, et al., Facile synthesis and antitumor activity of novel2-trifluoromethylthieno[2,3-d]pyrimidine derivatives, Chin. Chem. Lett. 25(2014) 1006-1010.

    7. [7]

      [2] (a) F. Qing, Recent advances of trifluoromethylation, Chin. J. Org. Chem. 32 (2012)815-824;

    8. [8]

      (b) J.A. Ma, D. Cahard, Asymmetric fluorination, trifluoromethylation, and perfluoroalkylationreactions, Chem. Rev. 108 (2008) PR1-PR43;

    9. [9]

      (c) J. Nie, H.C. Guo, D. Cahard, J.A. Ma, Asymmetric construction of stereogeniccarbon centers featuring a trifluoromethyl group from prochiral trifluoromethylatedsubstrates, Chem. Rev. 111 (2010) 455-529;

    10. [10]

      (d) S. Barata-Vallejo, A. Postigo, Metal-mediated radical perfluoroalkylation oforganic compounds, Coord. Chem. Rev. 257 (2013) 3051-3069.

    11. [11]

      [3] (a) O.A. Tomashenko, V.V. Grushin, Aromatic trifluoromethylation with metalcomplexes, Chem. Rev. 111 (2011) 4475-4521;

    12. [12]

      (b) S. Roy, B.T. Gregg, G.W. Gribble, V.D. Le, S. Roy, Trifluoromethylation of aryland heteroaryl halides, Tetrahedron 67 (2011) 2161-2195;

    13. [13]

      (c) C.P. Zhang, Q.Y. Chen, Y. Guo, J.C. Xiao, Y.C. Gu, Difluoromethylation andtrifluoromethylation reagents derived from tetrafluoroethane β-sultone: synthesis,reactivity and applications, Coord. Chem. Rev. 261 (2014) 28-72;

    14. [14]

      (d) T. Liang, C.N. Neumann, T. Ritter, Introduction of fluorine and fluorine-containingfunctional groups, Angew. Chem. Int. Ed. 52 (2013) 8214-8264.

    15. [15]

      [4] (a) V.C.R. McLoughlin, J. Thrower, A route to fluoroalkyl-substituted aromaticcompounds involving fluoroalkylcopper intermediates, Tetrahedron 25 (1969)5921-5940;

    16. [16]

      (b) Q.Y. Chen, S.W. Wu, Methyl fluorosulphonyldifluoroacetate; a new trifluoromethylatingagent, J. Chem. Soc., Chem. Commun. (1989) 705-706;

    17. [17]

      (c) M. Oishi, H. Kondo, H. Amii, Aromatic trifluoromethylation catalytic in copper,Chem. Commun. (2009) 1909-1911.

    18. [18]

      [5] D.M. Wiemers, D.J. Burton, Pregeneration, spectroscopic detection and chemicalreactivity of (trifluoromethyl)copper, an elusive and complex species, J. Am.Chem. Soc. 108 (1986) 832-834.

    19. [19]

      [6] A.I. Konovalov, A. Lishchynskyi, V.V. Grushin, Mechanism of trifluoromethylationof aryl halides with CuCF3 and the ortho effect, J. Am. Chem. Soc. 136 (2014)13410-13425.

    20. [20]

      [7] G.G. Dubinina, H. Furutachi, D.A. Vicic, Active trifluoromethylating agents fromwell-defined copper(I)-CF3 complexes, J. Am. Chem. Soc. 130 (2008) 8600-8601.

    21. [21]

      [8] Y. Zhao, D.G. Truhlar, A new local density functional for main-group thermochemistry,transition metal bonding, thermochemical kinetics, and noncovalentinteractions, J. Chem. Phys. 125 (2006) 194101.

    22. [22]

      [9] (a) W.J. Hehre, R. Ditchfield, J.A. Pople, Self-consistent molecular orbital methods.XII. Further extensions of Gaussian-type basis sets for use in molecular orbitalstudies of organic molecules, J. Chem. Phys. 56 (1972) 2257-2261;

    23. [23]

      (b) P.C. Hariharan, J.A. Pople, The influence of polarization functions on molecularorbital hydrogenation energies, Theor. Chim. Acta 28 (1973) 213-222;

    24. [24]

      (c) M.M. Francl, W.J. Pietro, W.J. Hehre, et al., Self-consistent molecular orbitalmethods. XXIII. A polarization-type basis set for second-row elements, J. Chem.Phys. 77 (1982) 3654-3665.

    25. [25]

      [10] (a) P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations.Potentials for K to Au including the outermost core orbitals, J. Chem. Phys.82 (1985) 299-310;

    26. [26]

      (b) W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations.Potentials for main group elements Na to Bi, J. Chem. Phys. 82 (1985) 284-298;

    27. [27]

      (c) P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82 (1985)270-283.

    28. [28]

      [11] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision D, Gaussian,Inc., Wallingford, CT, 2013.

    29. [29]

      [12] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based onsolute electron density and on a continuum model of the solvent defined by thebulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (2009)6378-6396.

    30. [30]

      [13] (a) G. Lefèvre, G. Franc, A. Tlili, et al., Contribution to the mechanism of coppercatalyzedC-N and C-O bond formation, Organometallics 31 (2012) 7694-7707;

    31. [31]

      (b) I.P. Beletskaya, A.V. Cheprakov, The complementary competitors: palladiumand copper in C-N cross-coupling reactions, Organometallics 31 (2012) 7753-7808;

    32. [32]

      (c) G.O. Jones, P. Liu, K.N. Houk, S.L. Buchwald, Computational explorations ofmechanisms and ligand-directed selectivities of copper-catalyzed Ullmann-typereactions, J. Am. Chem. Soc. 132 (2010) 6205-6213;

    33. [33]

      (d) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Aryl-aryl bondformation one century after the discovery of the Ullmann reaction, Chem. Rev.102 (2002) 1359-1470;

    34. [34]

      (e) Z. Weng, W. He, C. Chen, et al., An air-stable copper reagent for nucleophilictrifluoromethylthiolation of aryl halides, Angew. Chem. Int. Ed. 52 (2013) 1548-1552.

    35. [35]

      [14] (a) A. Houmam, Electron transfer initiated reactions: bond formation and bonddissociation, Chem. Rev. 108 (2008) 2180-2237;

    36. [36]

      (b) C.Y. Lin, M.L. Coote, A. Gennaro, K. Matyjaszewski, Ab initio evaluation of thethermodynamic and electrochemical properties of alkyl halides and radicals andtheir mechanistic implications for atom transfer radical polymerization, J. Am.Chem. Soc. 130 (2008) 12762-12774.

  • 加载中
    1. [1]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    2. [2]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    3. [3]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    4. [4]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    5. [5]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    6. [6]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    7. [7]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    8. [8]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    9. [9]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    10. [10]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    11. [11]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    12. [12]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    13. [13]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    14. [14]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    15. [15]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    16. [16]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    19. [19]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    20. [20]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

Metrics
  • PDF Downloads(0)
  • Abstract views(556)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return