Citation: Cheng-Xi Zhang, Yu-Yuan Deng, Yi-Yang Zhang, Po Yang, Yi Gu. Study on products and reaction paths for synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine from phenol, aniline and formaldehyde[J]. Chinese Chemical Letters, ;2015, 26(3): 348-352. doi: 10.1016/j.cclet.2014.12.005 shu

Study on products and reaction paths for synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine from phenol, aniline and formaldehyde

  • Corresponding author: Po Yang,  Yi Gu, 
  • Received Date: 29 September 2014
    Available Online: 19 November 2014

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21174093). (No. 21174093)

  • To study the synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine (benzoxazine), the reaction paths of phenol, aniline and formaldehyde were investigated by analyzing the synthesis crude products. With the aid of high-performance liquid chromatography (HPLC), chromatographic column and preparative HPLC, seven compounds originated from the crude products were obtained and their chemical structures were elucidated. Possible reaction paths are proposed based on these compounds. Results show that Nhydroxymethyl aniline (HMA) derived from the reaction of formaldehyde and aniline is probably the key intermediate during the reaction. HMA can react with itself or other reactants to form other intermediates, such as 1,3,5-triphenyl-1,3,5-triazinane and 2-((phenylamino)methyl)phenol, and further form benzoxazine and byproducts.
  • 加载中
    1. [1]

      [1] H. Ishida, T. Agag, Handbook of Benzoxazine Resins, Elsevier, New York, 2011.

    2. [2]

      [2] N. Ghosh, B. Kiskan, Y. Yagci, Polybenzoxazines-new high performance thermosetting resins: synthesis and properties, Prog. Polym. Sci. 32 (2007) 1344-1391.

    3. [3]

      [3] X. Ning, H. Ishida, Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers, J. Polym. Sci. Part A: Polym. Chem. 32 (1994) 1121-1129.

    4. [4]

      [4] S.K. Kim, S.W. Choi, W.S. Jeon, et al., Cross-linked benzoxazine-benzimidazole copolymer electrolyte membranes for fuel cells at elevated temperature, Macromolecules 45 (2012) 1438-1446.

    5. [5]

      [5] R. Kudoh, A. Sudo, T. Endo, A highly reactive benzoxazine monomer, 1-(2-hydroxyethyl)-1,3-benzoxazine: activation of benzoxazine by neighboring group participation of hydroxyl group, Macromolecules 43 (2010) 1185-1187.

    6. [6]

      [6] S.F. Li, Synthesis of benzoxazine-based phenolic resin containing furan groups, Chin. Chem. Lett. 21 (2010) 868-871.

    7. [7]

      [7] P. Yang, Y. Gu, Synthesis of a novel benzoxazine containing benzoxazole structure, Chin. Chem. Lett. 21 (2010) 558-562.

    8. [8]

      [8] F.W. Holly, A.C. Cope, Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine, J. Am. Chem. Soc. 66 (1944) 1875-1879.

    9. [9]

      [9] M.C. Aversa, P. Giannetto, C. Caristi, A. Ferlazzo, Behaviour of an N-(o-hydroxybenzyl)-b-amino-acid in the presence of dehydrating agents. Synthesis of a 3,4-dihydro-2H-1,3-benzoxazine, J. Chem. Soc. Chem. Commun. (1982) 469-470.

    10. [10]

      [10] Z. Brunovska, J.P. Liu, H. Ishida, 1,3,5-Triphenylhexahydro-1,3,5-triazine-active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers, Macromol. Chem. Phys. 200 (1999) 1745-1752.

    11. [11]

      [11] Y.L. Liu, J.M. Yu, C.I. Chou, Preparation and properties of novel benzoxazine and polybenzoxazine with maleimide groups, J. Polym. Sci. Part A: Polym. Chem. 42 (2004) 5954-5963.

    12. [12]

      [12] C.H. Lin, S.L. Chang, C.W. Hsieh, H.H. Lee, Aromatic diamine-based benzoxazines and their high performance thermosets, Polymer 49 (2008) 1220-1229.

    13. [13]

      [13] W.J. Burke, 3,4-dihydro-1,3,2H-benzoxazines. Reaction of p-substituted phenols with N,N-dimethylolamines, J. Am. Chem. Soc. 71 (1949) 609-612.

    14. [14]

      [14] W.J. Burke, C.W. Stephens, Monomeric products from the condensation of phenol with formaldehyde and primary amines, J. Am. Chem. Soc. 74 (1952) 1518-1520.

    15. [15]

      [15] W.J. Burke, M.J. Kolbezen, C.W. Stephens, Condensation of naphthols with formaldehyde and primary amines, J. Am. Chem. Soc. 74 (1952) 3601-3605.

    16. [16]

      [16] W.J. Burke, K. Murdock, G. Ec, Condensation of hydroxyaromatic compounds with formaldehyde and primary aromatic amines, J. Am. Chem. Soc. 76 (1954) 1677-1679.

    17. [17]

      [17] H. Ishida, Process for preparation of benzoxazine compounds in solventless systems, US 5543516, 1996.

    18. [18]

      [18] W.J. Burke, C. Weatherbee, H. Lau, G.V. Lear, G. Goken, Mono-1,3-benzoxazines from hydroquinone, J. Org. Chem. 28 (1963) 1098-1100.

    19. [19]

      [19] W.J. Burke, E.L.M. Glennie, C. Weatherbee, Condensation of halophenols with formaldehyde and primary amines, J. Org. Chem. 29 (1964) 909-912.

    20. [20]

      [20] X.Y. Wang, F. Chen, Y. Gu, Influence of electronic effects from bridging groups on synthetic reaction and thermally activated polymerization of bisphenol-based benzoxazines, J. Polym. Sci. Part A: Polym. Chem. 49 (2011) 1443-1452.

    21. [21]

      [21] W.J. Burke, C. Weatherbee, 3,4-dihydro-1,3,2H-benzoxazines. Reaction of polyhydroxybenzenes with N-methylolamines, J. Am. Chem. Soc. 72 (1950) 4691-4694.

    22. [22]

      [22] W.J. Burke, C.R. Hammer, C. Weatherbee, Bis-m-oxazines from hydroquinone, J. Org. Chem. 26 (1961) 4403-4407.

    23. [23]

      [23] W.J. Burke, R.P. Smith, C. Weatherbee, N,N-bis-(hydroxybenzyl)-amines: synthesis from phenols, formaldehyde and primary amines, J. Am. Chem. Soc. 74 (1952) 602-605.

    24. [24]

      [24] S. Chirachanchai, A. Laobuthee, S. Phongtamrug, Self termination of ring opening reaction of p-substituted phenol-based benzoxazines: an obstructive effect via intramolecular hydrogen bond, J. Heterocycl. Chem. 46 (2009) 714-721.

    25. [25]

      [25] A. Laobuthee, S. Chirachanchai, H. Ishida, K. Tashiro, Asymmetric mono-oxazine: an inevitable product from mannich reaction of benzoxazine dimers, J. Am. Chem. Soc. 123 (2001) 9947-9955.

    26. [26]

      [26] J. Liu, X. Lu, Z. Xin, C.L. Zhou, Synthesis and surface properties of low surface free energy silane-functional polybenzoxazine films, Langmuir 29 (2012) 411-416.

    27. [27]

      [27] Y.R. Cheng, J. Yang, Y.X. Jin, D.Y. Deng, F. Xiao, Synthesis and properties of highly cross-linked thermosetting resins of benzocyclobutene-functionalized benzoxazine, Macromolecules 45 (2012) 4085-4091.

    28. [28]

      [28] H.C. Chang, C.H. Lin, Y.W. Tian, Y.R. Feng, L.H. Chan, Synthesis of 9,9-bis(4-aminophenyl) fluorine-based benzoxazine and properties of its high-performance thermoset, J. Polym. Sci. Part A: Polym. Chem. 50 (2012) 2201-2210.

    29. [29]

      [29] M.A. Sprung, A summary of the reactions of aldehydes with amines, Chem. Rev. 26 (1940) 297-338.

    30. [30]

      [30] W.R. Abrams, R.G. Kallen, Equilibriums and kinetics of N-hydroxymethylamine formation from aromatic exocyclic amines and formaldehyde. Effects of nucleophilicity and catalyst strength upon mechanisms of catalysis of carbinolamine formation, J. Am. Chem. Soc. 98 (1976) 7777-7789.

    31. [31]

      [31] Y.Y. Deng, Q. Zhang, H.C. Zhang, et al., Kinetics of 3,4-dihydro-2H-3-phenyl-1, 3-benzoxazine synthesis from Mannich base and formaldehyde, Ind. Eng. Chem. Res. 53 (2014) 1933-1939.

  • 加载中
    1. [1]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    2. [2]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    3. [3]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    4. [4]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    7. [7]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    8. [8]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    11. [11]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    12. [12]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    13. [13]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    14. [14]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    15. [15]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    16. [16]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    17. [17]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    18. [18]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    19. [19]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    20. [20]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

Metrics
  • PDF Downloads(0)
  • Abstract views(758)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return