Citation: Dong-Shun Deng, Guo-Qiang Han, Xiao Zhu, Xuan Xu, Yu-Tong Gong, Yong Wang. Selective hydrogenation of unprotected indole to indoline over N-doped carbon supported palladium catalyst[J]. Chinese Chemical Letters, ;2015, 26(3): 277-281. doi: 10.1016/j.cclet.2014.12.001 shu

Selective hydrogenation of unprotected indole to indoline over N-doped carbon supported palladium catalyst

  • Corresponding author: Dong-Shun Deng, 
  • Received Date: 2 September 2014
    Available Online: 2 November 2014

    Fund Project: the Specialized Research Fund for the Doctoral Program of Higher Education (No. J20130060) (No. U1162124) the National Natural Science Foundation of China (No. 21206085) (No. LR13B030001) Excellent Middle-aged and Young Scientists Research Award Foundation of Shandong Province (No. BS2011CL023) (No. J20130060) the Fundamental Research Funds for the Central Universities, the Program for Zhejiang Leading Team of S&T Innovation, and the Partner Group Program of Zhejiang University and the Max-Planck Society are greatly appreciated. (No. 21206085)

  • Mesoporous N-doped carbon supported palladium catalyst Pd@CN0.132 was able to efficiently catalyze unprotected indole to indoline under mild conditions. In the aqueous system, a selectivity of 100% and conversion of 96% was achieved under 313 K and atmospheric hydrogen gas.
  • 加载中
    1. [1]

      [1] R. Natesh, S.L.U. Schwager, H.R. Evans, E.D. Sturrock, K.R. Acharya, Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme, Biochemistry 43 (2004) 8718-8724.

    2. [2]

      [2] A.B. Dounay, L.E. Overman, A.D. Wrobleski, Sequential catalytic asymmetric Heckiminium ion cyclization: enantioselective total synthesis of the strychnos alkaloid minfiensine, J. Am. Chem. Soc. 127 (2005) 10186-10187.

    3. [3]

      [3] N. Gruenfeld, J.L. Stanton, A.M. Yuan, et al., Huebner, Angiotensin converting enzyme inhibitors: 1-glutarylindoline-2-carboxylic acid derivatives, J. Med. Chem. 26 (1983) 1227-1282.

    4. [4]

      [4] S. Anas, H.B. Kagan, Routes toward enantiopure 2-substituted indolines: an overview, Tetrahedron: Asymmetry 20 (2009) 2193-2199.

    5. [5]

      [5] D.Y. Liu, G.W. Zhao, L. Xiang, Diverse strategies for the synthesis of the indoline scaffold, Eur. J. Org. Chem. 21 (2010) 3975-3984.

    6. [6]

      [6] A. Smith, J.H.P. Utley, The catalytic hydrogenation of indoles, J. Chem. Soc. Chem. Commun. (1965) 427-428.

    7. [7]

      [7] H. Ishii, K. Murakami, E. Sakurada, K. Hosoya, Y. Murakami, Polymerisation of indole. Part 2. A new indole trimer, J. Chem. Soc. Perkin Trans. 1 (1988) 2377-2385.

    8. [8]

      [8] C.W. Bird, Heteroaromaticity. 5. A unified aromaticity index, Tetrahedron 48 (1992) 335-340.

    9. [9]

      [9] Y.G. Zhou, Asymmetric hydrogenation of heteroaromatic compounds, Acc. Chem. Res. 40 (2007) 1357-1366.

    10. [10]

      [10] G.W. Gribble, J.H. Hoffman, Reaction of sodium borohydride in acidic media; VI. Reduction of indoles with cyanoborohydride in acetic acid, Synthesis 12 (1977) 859-860.

    11. [11]

      [11] D.M. Ketcha, B.A. Lieurance, The reduction of N-(phenylsulfonyl) indoles without sodium cyanoborohydride in trifluoroacetic acid, Tetrahedron Lett. 30 (1989) 6833-6836.

    12. [12]

      [12] A. Srikrishana, T.J. Reddy, R. Viswajanani, Reductioxi of quinolines to 1,2,3,4-tetrahydro derivatives employing a combination of NaCNBH3, and BF3-OEt2, Tetrahedron 52 (1996) 1631-1636.

    13. [13]

      [13] J.G. Berger, A rapid convenient reduction of indoles to indulines and of tetrahydrocarbazoles to hexahydrocarbazoles by trimethylamine/borane, Synthesis 7 (1974) 508-510.

    14. [14]

      [14] A.E. Lanzilotti, R. Littell, W.J. Fanshawe, T.C. McKenzie, F.M. Lovell, Stereoselective reduction of some indoles with triethylsilane-trifluoroacetic acid, J. Org. Chem. 44 (1979) 4809-4813.

    15. [15]

      [15] M.X. Tan, Y.G. Zhang, An efficient metal-free reduction using diphenylsilane with (tris-perfluorophenyl) borane as catalyst, Tetrahedron Lett. 50 (2009) 4912-4915.

    16. [16]

      [16] A.M. Voutchkova, D. Gnanamgari, C.E. Jakobsche, et al., Selective partial reduction of quinolines: hydrosilylation vs. transfer hydrogenation, J. Organomet. Chem. 693 (2008) 1815-1821.

    17. [17]

      [17] Y. Kikugawa, M. Kashimura, Catalytic transfer hydrogenation of indoles to indolines in formic acid, Synthesis 9 (1982) 785-787.

    18. [18]

      [18] S. Chandrasekhar, D. Basu, C.R. Reddy, Palladium-catalyzed reduction of N-(tert-butoxycarbonyl) indoles by polymethylhydrosiloxane, Synthesis (2007) 1509-1512.

    19. [19]

      [19] G.W. Gribble, P.D. Lord, J. Skotnicki, et al., Reactions of sodium borohydride in acidic media. I. Reduction of indoles and alkylation of aromatic amines with carboxylic acids, J. Am. Chem. Soc. 96 (1974) 7812-7814.

    20. [20]

      [20] B. Robinson, The reduction of indoles and related compounds, Chem. Rev. 69 (1969) 785-797.

    21. [21]

      [21] P. Barbaro, C. Bianchini, A. Meli, M. Moreno, F. Vizza, Hydrogenation of indole by phosphine-modified rhodium and ruthenium catalysts, Organometallics 21 (2002) 1430-1437.

    22. [22]

      [22] A.F. Borowski, S. Sabo-Etienne, B. Donnadieu, B. Chaudret, Reactivity of the bis(dihydrogen) complex [RuH2(h2-H2)2(PCy3)2] toward N-heteroaromatic compounds. Regioselective hydrogenation of acridine to 1,2,3,4,5,6,7,8-octahydroacridine, Organometallics 22 (2003) 1630-1637.

    23. [23]

      [23] R. Kuwano, M. Kashiwabara, Ruthenium-catalyzed asymmetric hydrogenation of N-Boc-indoles, Org. Lett. 8 (2006) 2653-2655.

    24. [24]

      [24] R. Kuwano, K. Kaneda, T. Ito, K. Sato, T. Kurokawa, Highly enantioselective synthesis of chiral 3-substituted indolines by catalytic asymmetric hydrogenation of indoles, Org. Lett. 6 (2004) 2213-2215.

    25. [25]

      [25] R. Kuwano, K. Sato, T. Kurokawa, D. Karube, Y. Ito, Catalytic asymmetric hydrogenation of heteroaromatic compounds, indoles, J. Am. Chem. Soc. 122 (2000) 7614-7615.

    26. [26]

      [26] A. Baeza, A. Pfaltz, Iridium-catalyzed asymmetric hydrogenation of N-protected indoles, Chem. Eur. J. 16 (2010) 2036-2039.

    27. [27]

      [27] D.S. Wang, Q.A. Chen, W. Li, et al., Pd-catalyzed asymmetric hydrogenation of unprotected indoles activated by brønsted acids, J. Am. Chem. Soc. 132 (2010) 8909-8911.

    28. [28]

      [28] D.S. Wang, J. Tang, Y.G. Zhou, et al., Dehydration triggered asymmetric hydrogenation of 3-(α-hydroxyalkyl) indoles, Chem. Sci. 2 (2011) 803-806.

    29. [29]

      [29] G.Y. Fan, W.J. Huang, Synthesis of ruthenium/reduced graphene oxide composites and application for the selective hydrogenation of halonitroaromatics, Chin. Chem. Lett. 25 (2014) 359-363.

    30. [30]

      [30] J. Zhao, L. Ma, X.L. Xu, F. Feng, X.N. Li, Synthesis of carbon-supported Pd/SnO2 catalyst for highly selective hydrogenation of 2,4-difluoronitrobenzene, Chin. Chem. Lett. 25 (2014) 1137-1140.

    31. [31]

      [31] X.L. Zhao, K.F. Yang, Y.P. Zhang, J. Zhu, L.W. Xu, Sevelamer as an efficient and reusable heterogeneous catalyst for the Knoevenagel reaction in water, Chin. Chem. Lett. 25 (2014) 1141-1144.

    32. [32]

      [32] J.E. Shaw, P.R. Stapp, Regiospecific hydrogenation of quinolines and indoles in the heterocyclic ring, J. Heterocycl. Chem. 24 (1987) 1477-1483.

    33. [33]

      [33] A. Kulkarni, W.H. Zhou, B. Török, Heterogeneous catalytic hydrogenation of unprotected indoles in water: a green solution to a long-standing challenge, Org. Lett. 13 (2011) 5124-5127.

    34. [34]

      [34] H. Cho, F. Török, B. Török, Selective reduction of condensed N-heterocycles using water as a solvent and a hydrogen source, Org. Biomol. Chem. 11 (2013) 1209-1215.

    35. [35]

      [35] M.F. Fang, N. Machalaba, R.A. Sanchez-Delgado, Hydrogenation of arenes and Nheteroaromatic compounds over ruthenium nanoparticles on poly(4-vinylpyridine): a versatile catalyst operating by a substrate-dependent dual site mechanism, Dalton Trans. 40 (2011) 10621-10632.

    36. [36]

      [36] D. Clarisse, B. Fenet, F. Fache, Hexafluoroisopropanol: a powerful solvent for the hydrogenation of indole derivatives. Selective access to tetrahydroindoles or cisfused octahydroindoles, Org. Biomol. Chem. 10 (2012) 6587-6594.

    37. [37]

      [37] N.A. Beckers, S. Huynh, X.J. Zhang, E.J. Luber, J.M. Buriak, Screening of heterogeneous multimetallic nanoparticle catalysts supported on metal oxides for mono-, poly-, and heteroaromatic hydrogenation activity, ACS Catal. 2 (2012) 1524-1534.

    38. [38]

      [38] S. Coulton, T.L. Gilchrist, K. Graham, Catalytic hydrogenation of N-t-butoxycarbonylindoles, Tetrahedron 53 (1997) 791-798.

    39. [39]

      [39] X. Xu, Y. Li, Y.T. Gong, et al., Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade, J. Am. Chem. Soc. 134 (2012) 16987-16990.

    40. [40]

      [40] Y. Wang, J. Yao, H.R. Li, D.S. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J. Am. Chem. Soc. 133 (2011) 2362-2365.

    41. [41]

      [41] Y. Wang, Y. Di, M. Antonietti, et al., Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids, Chem. Mater. 22 (2010) 5119-5121.

    42. [42]

      [42] Y. Li, X. Xu, P.F. Zhang, et al., Highly selective Pd@mpg-C3N4 catalyst for phenol hydrogenation in aqueous phase, RSC Adv. 3 (2013) 10973-10982.

    43. [43]

      [43] D.S. Deng, Y. Yang, Y.T. Gong, et al., Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions, Green Chem. 15 (2013) 2525-2531.

    44. [44]

      [44] Y. Li, Y.T. Gong, X. Xu, et al., A practical and benign synthesis of amines through Pd@mpg-C3N4 catalyzed reduction of nitriles, Catal. Commun. 28 (2012) 9-12.

    45. [45]

      [45] Y.T. Gong, P.F. Zhang, X. Xu, et al., A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions, J. Catal. 297 (2013) 272-280.

    46. [46]

      [46] H.Y. Jin, T.Y. Xiong, Y. Li, et al., Improved electrocatalytic activity for ethanol oxidation by Pd@N-doped carbon from biomass, Chem. Commun. 50 (2014) 12637-12640.

    47. [47]

      [47] V.Z. Radkevich, T.L. Senko, K. Wilson, et al., The influence of surface functionalization of activated carbon on palladium dispersion and catalytic activity in hydrogen oxidation, Appl. Catal. A 335 (2008) 241-251.

    48. [48]

      [48] R.L. Hinman, E.B. Whipple, The protonation of indoles: position of protonation, J. Am. Chem. Soc. 84 (1962) 2534-2539.

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    3. [3]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    4. [4]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    5. [5]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    6. [6]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    7. [7]

      Lijia XuTong ZhongWei ZhaoBing YaoLin DingHuangxian Ju . Chemoselective labeling-based spermatozoa glycan imaging reveals abnormal glycosylation in oligoasthenotspermia. Chinese Chemical Letters, 2024, 35(4): 108760-. doi: 10.1016/j.cclet.2023.108760

    8. [8]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    9. [9]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    10. [10]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    11. [11]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    12. [12]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    13. [13]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    14. [14]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    15. [15]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    18. [18]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    19. [19]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    20. [20]

      Ting PanDinghu ZhangGuomei YouXiaoxia WuChenguang ZhangXinyu MiaoWenzhi RenYiwei HeLulu HeYuanchuan GongJie LinAiguo WuGuoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857

Metrics
  • PDF Downloads(0)
  • Abstract views(618)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return