Citation: Chang-Cheng Wang, Sheng-Yong Yan, Yu-Qi Chen, Yi-Min Zhou, Cheng Zhong, Pu Guo, Rong Huang, Xiao-Cheng Weng, Xiang Zhou. Triphenylamine pyridine acetonitrile fluorogens with green emission for pH sensing and application in cells[J]. Chinese Chemical Letters, ;2015, 26(3): 323-328. doi: 10.1016/j.cclet.2014.11.029 shu

Triphenylamine pyridine acetonitrile fluorogens with green emission for pH sensing and application in cells

  • Corresponding author: Xiang Zhou, 
  • Received Date: 19 June 2014
    Available Online: 15 October 2014

    Fund Project: Thisworkwas supported by theNational Basic Research Program of China (973 Program) (Nos. 2012CB720600, 2012CB720603) (973 Program) the National Science Foundation of China (Nos. 91213302, 81373256, 21272181) (Nos. 91213302, 81373256, 21272181) the Program for Changjiang Scholars and Innovative Research Team in University ([62_TD$DIFFF]IF$DTD8_[5]No. IRT1030) (No. 2012ZX10003002-014)

  • In this work, triphenylamine pyridine acetonitrile compounds PyA1, PyA2 and PyA3 are designed and synthesized. They show green fluorescence in water and bright emission in solid state. They have large Strokes shift (about 100 nm). The excitation and emission spectra are investigated in ethyl acetate, chloroform, cyclohexane, ethanol, water, acetonitrile, THF, DMF and DMSO. It is interesting to find that these compounds are able to sense increasing pH values ranging from pH 2 to 7 by showing different color and emission intensities: almost no emission at pH 2 and strong green emission at pH 7. The acid-base switched color and fluorescence changes can be observed under UV irradiation, in water solution and 1% agarose gel. These changes can be repeated for several cycles. We are able to employ these compounds for cell pH environment imaging.
  • 加载中
    1. [1]

      [1] N. Leclerc, S. Sanaur, L. Galmiche, et al., 6-(Arylvinylene)-3-bromopyridine derivatives as lego building blocks for liquid crystal, nonlinear optical, and blue light emitting chromophores, Chem. Mater. 3 (2005) 502-513.

    2. [2]

      [2] J. Morin, N. Drolet, Y. Tao, M. Leclerc, Syntheses and characterization of electroactive and photoactive 2,7-carbazolenevinylene-based conjugated oligomers and polymers, Chem. Mater. 23 (2004) 4619-4626.

    3. [3]

      [3] M.S. Wong, Z.H. Li, Y. Tao, M. D'Iorio, Synthesis and functional properties of donor-acceptor π-conjugated oligomers, Chem. Mater 5 (2003) 1198-1203.

    4. [4]

      [4] W. Zhang, Z. He, Y. Wang, et al., Non-doped red or blue electroluminescent materials based on fluorenyl-triarylamines with fumaronitrile or fluorene bridge, Thin. Solid Films 7 (2012) 2794-2799.

    5. [5]

      [5] B. An, S. Kwon, S. Jung, S.Y. Park, Enhanced emission and its switching in fluorescent organic nanoparticles, J. Am. Chem. Soc. 48 (2002) 14410-14415.

    6. [6]

      [6] J. Luo, Z. Xie, J.W. Lam, et al., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun. 18 (2001) 1740-1741.

    7. [7]

      [7] Y. Liu, X. Tao, F. Wang, et al., Aggregation-induced emissions of fluorenonearylamine derivatives: a new kind of materials for nondoped red organic lightemitting diodes, J. Phys. Chem. C 10 (2008) 3975-3981.

    8. [8]

      [8] D.U. Kim, S.H. Paik, S. Kim, T. Tsutsui, Design and synthesis of a novel red electroluminescent dye, Synth. Met. 1 (2001) 43-46.

    9. [9]

      [9] C.L. Chiang, M.F. Wu, D.C. Dai, et al., Red-emitting fluorenes as efficient emitting hosts for non-doped, organic red-light-emitting diodes, Adv. Funct. Mater. 15 (2005) 231-238.

    10. [10]

      [10] L. Chen, Y. Cui, X. Mei, et al., Synthesis and characterization of triphenylaminosubstituted chromophores for nonlinear optical applications, Dyes Pigments 3 (2007) 293-298.

    11. [11]

      [11] B. Li, Q. Li, B. Liu, et al., The synthesis and photoluminescence characteristics of novel α,β-diarylacrylonitrile derivatives containing both a biphenyl group and a triphenylamine unit, Dyes Pigments 3 (2011) 301-306.

    12. [12]

      [12] C. Allain, F. Schmidt, R. Lartia, et al., Vinyl-pyridinium triphenylamines: novel farred emitters with high photostability and two-photon absorption properties for staining DNA, ChemBioChem 4 (2007) 424-433.

    13. [13]

      [13] T.C. Lin, W.L. Lin, C.M. Wang, C.W. Fu, Synthesis and characterization of highly soluble two-photon-absorbing chromophores with multi-branched and dendritic architectures, Eur. J. Org. Chem. 5 (2011) 912-921.

    14. [14]

      [14] B. Wang, Y. Wang, J. Hua, et al., Starburst triarylamine donor-acceptor-donor quadrupolar derivatives based on cyano-substituted diphenylaminestyrylbenzene: tunable aggregation-induced emission colors and large two-photon absorption cross sections, Chem. Eur. J. 9 (2011) 2647-2655.

    15. [15]

      [15] S.J.K. Pond, M. Rumi, M.D. Levin, et al., One-and two-photon spectroscopy of donor-acceptor-donor distyrylbenzene derivatives: effect of cyano substitution and distortion from planarity, J. Phys. Chem. A 47 (2002) 11470-11480.

    16. [16]

      [16] K. Panthi, R.M. Adhikari, T.H. Kinstle, Aromatic fumaronitrile core-based donor-linker-acceptor-linker-donor (D-p-A-p-D) compounds: synthesis and photophysical properties, J. Phys. Chem. A 13 (2010) 4542-4549.

    17. [17]

      [17] R. Huang, S. Yan, X. Zheng, et al., Development of a pH-activatable fluorescent probe and its application for visualizing cellular pH change, Analyst 19 (2012) 4418-4420.

    18. [18]

      [18] F. Galindo, M.I. Burguete, L. Vigara, et al., Synthetic macrocyclic peptidomimetics as tunable pH probes for the fluorescence imaging of acidic organelles in live cells, Angew. Chem. Int. Ed. Engl. 40 (2005) 6504-6508.

    19. [19]

      [19] H. Lu, B. Xu, Y. Dong, et al., Novel fluorescent pH sensors and a biological probe based on anthracene derivatives with aggregation-induced emission characteristics, Langmuir 9 (2010) 6838-6844.

    20. [20]

      [20] D. Cui, X. Qian, F. Liu, R. Zhang, Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide, Org. Lett. 16 (2004) 2757-2760.

    21. [21]

      [21] B. Tang, X. Liu, K. Xu, et al., A dual near-infrared pH fluorescent probe and its application in imaging of HepG2 cells, Chem. Commun. 36 (2007) 3726-3728.

    22. [22]

      [22] T. Mallegol, S. Gmouth, M. Meziane, et al., Practical and efficient synthesis of tris(4-formylphenyl)amine, a key building block in materials chemistry, Synthesis 11 (2005) 1771-1774.

    23. [23]

      [23] H. Lai, Y.J. Xiao, S.Y. Yan, et al., Symmetric cyanovinyl-pyridinium triphenylamine: a novel fluorescent switch-on probe for an antiparallel G-quadruplex, Analyst 139 (2014) 1834-1838.

    24. [24]

      [24] G.W. Trucks, M.J. Frisch, H.B. Schlegel, et al., Gaussian 09, Revision A 02 ed., Gaussian Inc., Wallingford, CT, 2009.

    25. [25]

      [25] S.J. Chen, J.Z. Liu, Y. Liu, et al., An AIE-active hemicyanine fluorogen with stimuliresponsive red/blue emission: extending the pH sensing range by "switch + -knob" effect, Chem. Sci. 3 (2012) 1804-1809.

  • 加载中
    1. [1]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    2. [2]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    3. [3]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    4. [4]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    5. [5]

      Fengkai ZouBorui SuHan LengNini XinShichao JiangDan WeiMei YangYouhua WangHongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523

    6. [6]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    9. [9]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

    10. [10]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    11. [11]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    12. [12]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    13. [13]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    14. [14]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    15. [15]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    16. [16]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

    17. [17]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    18. [18]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    19. [19]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    20. [20]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

Metrics
  • PDF Downloads(0)
  • Abstract views(683)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return