Citation: Hao Wang, Yi-Ping Chen, Zhu-Chai You, Meng-Xi Zhou, Ning Zhang, Yan-Qiong Sun. Synthesis and characterization of a new catalyst for RhB degradation constructed by [SiMo12O40]4- anionic cluster[J]. Chinese Chemical Letters, ;2015, 26(2): 187-192. doi: 10.1016/j.cclet.2014.11.023 shu

Synthesis and characterization of a new catalyst for RhB degradation constructed by [SiMo12O40]4- anionic cluster

  • Corresponding author: Yi-Ping Chen, 
  • Received Date: 21 July 2014
    Available Online: 29 September 2014

    Fund Project: This research was financially supported by the National Science Foundation of China (Nos. 21473030, J1103303) (Nos. 21473030, J1103303) Fujian Provincial Natural Science Foundation (No. 2013J01042) (No. 2013J01042) Open Fund of State Key Laboratory of Structural Chemistry (No. 20130015) (No. 20130015)

  • A Keggin-type polyoxomolybdate [H2biim]{Ni(biim)3(SiMo12O40)} [biim=1H,1'H-[2,2']biimidazolyl] has been synthesized under hydrothermal condition and characterized by XRD, temperature-dependent IR, TG, temperature-induced and magnetism-induced 2D infrared correlation spectroscopy (2D-IR COS) and UV-vis DRS in order to explore the relationship between structure and properties. Temperatureinduced 2D-IR COS spectroscopy indicates that the terminal Mo-Ou/v bonds are more sensitive than the bridging Mo=Ot bands to temperature variation, which is in agreement with the conclusion of temperature-dependent IR. Magnetism-dependent 2D-IR COS spectroscopy reveals the stretching vibration of the Mo=Ot occurs prior to the stretching vibration of the Mo-Ou/v, which is due to the coordination environment and the valence of the Siatom. The stability of compound 1 is investigated via TG and temperature-dependent IR. In RhB degradation, compound 1 shows good photocatalytic abilities.
  • 加载中
    1. [1]

      [1] K. Ulrich, V. Jacqueline, T. Ren, et al., Heteropolymolybdates of phosphate, phosphonate, and phosphite functionalized by glycine, Inorg. Chem. 42 (2003) 1135-1139.

    2. [2]

      [2] J.R.G. Mascaros, M.G. Carlos, Supramolecular stabilization of the phosphitebased polyoxomolybdate [Mo6(PO3)(HPO3)3O18]-9, Polyhedron 26 (2007) 626-630.

    3. [3]

      [3] C.H. Li, Q. Wang, Y.N. Chi, et al., Supramolecular assembly of Keggin polyoxomolybdate and 2,2-bipyridine generated in situ from a decarboxylation coupling reaction, Chin. Chem. Lett. 24 (2013) 578-580.

    4. [4]

      [4] T. Safa, A. Brahim, H. Amor, A novel organic-inorganic hybrid with Anderson type polyanions as building blocks: (C6H10N3O2)2Na(H2O)2[Al(OH)6Mo6O18] 6H2O, Mater. Res. Bull. 47 (2012) 3791-3796.

    5. [5]

      [5] H.Y. Lü, W.Z. Ren, W.P. Liao, et al., Aerobic oxidative desulfurization of model diesel using a B-type Anderson catalyst [(C18H37)2N(CH3)2]3Co(OH)6Mo6O18 3H2O, Appl. Catal. B: Environ. 138-139 (2013) 79-83.

    6. [6]

      [6] H.Q. Tan, Y.G. Li, W.L. Chen, et al., A series of [MnMo9O32]6 based solids: homochiral transferred from adjacent polyoxoanions to one-, two-, and threedimensional frameworks, Cryst. Growth Des. 12 (2012) 1111-1117.

    7. [7]

      [7] C.D. Wu, C.Z. Lu, H.H. Zhuang, et al., Hydrothermal assembly of a novel threedimensional framework formed by [GdMo12O42]9 anions and nine coordinated GdIII cations, J. Am. Chem. Soc. 124 (2002) 3836-3837.

    8. [8]

      [8] M. Sarma, T. Chatterjee, H. Vindhya, et al., Spontaneous resolution through helical association of a Cu-azamacrocyclic complex with Lindqvist-type isopolyanion, Dalton Trans. 41 (2012) 1862-1866.

    9. [9]

      [9] R.N. Devi, J. Zubieta, Synthesis and characterization of three novel inorganic/ organic hybrid materials based on polyoxomolybdate clusters: an investigation into the structural consequences of steric effect of the organoimine ligands, Inorg. Chim. Acta 332 (2002) 72-78.

    10. [10]

      [10] Y.B. Huang, J.X. Chen, T.Y. Lan, et al., Syntheses, structures and properties of two Keggin polyoxometalates [H5PCo(4,40-bipy)Mo11O39][H3PMo12O40] 3.75 (4,40-bipy) 1.5H2O and [H3PMo12O40] 2(4,40-bipy) 1.5H2O, J. Mol. Struct. 783 (2006) 168-175.

    11. [11]

      [11] Y.P. Shi, W. Yang, G.L. Xue, et al., A novel crystal coexisting with two kinds of polyoxomolybdates: [n-Bu4N]8[Mo6O19]2[a-(Mo8O26)], J. Mol. Struct. 784 (2006) 244-248.

    12. [12]

      [12] N. Sonoyama, Y. Suganuma, T. Kume, et al., Lithium intercalation reaction into the Keggin type polyoxomolybdates, J. Power Sources 196 (2011) 6822-6827.

    13. [13]

      [13] K. Yu, B.B. Zhou, Y. Yu, et al., Supramolecular assembly based on Keggin cluster and basketlike cage, Inorg. Chem. Commun. 14 (2011) 1846-1849.

    14. [14]

      [14] Y.R. Guo, Q.J. Pan, Y.D. Wei, et al., Theoretical studies on the electronic and spectroscopic properties of Keggin-structure polyoxometalates a/b-[XM12O40]n (X=Si, P; M=Mo, W), J. Mol. Struct.: THEOCHEM 676 (2004) 55-64.

    15. [15]

      [15] N. Ronny, L. Michal, Aerobic oxidative dehydrogenations catalyzed by the mixedaddenda heteropolyanion PV2Mo10O40-5: a kinetic and mechanistic study, J. Am. Chem. Soc. 114 (1992) 7278-7286.

    16. [16]

      [16] L. Manfred, J. Helmut, Oxidation of activated phenols by dioxygen catalysed by the H5PV2Mo10O40 heteropolyanion, Tetrahedron Lett. 33 (1992) 1795-1798.

    17. [17]

      [17] S.L. Linguito, X. Zhang, M. Padmanabhan, et al., New polyoxomolybdate compounds synthesized in situ using ionic liquid 1-butyl-3-methyl-imidazolium tetrafluoroborate as green solvent, New J. Chem. 37 (2013) 2894-2901.

    18. [18]

      [18] I. Noda, Two-dimensional infrared spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8118.

    19. [19]

      [19] I. Noda, Progress in two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 799 (2006) 2-15.

    20. [20]

      [20] I. Noda, Two-dimensional correlation spectroscopy-biannual survey 2007-2009, J. Mol. Struct. 974 (2010) 3-24.

    21. [21]

      [21] Y.N. Cao, H.H. Zhang, C.C. Huang, et al., Synthesis, crystal structure and twodimensional infrared correlation spectroscopy of a layer-like transition metal (TM)-oxalate templated polyoxovanadium borate, J. Solid State Chem. 178 (2005) 3563-3570.

    22. [22]

      [22] (a) G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of GÖ ttingen, Germany, 1997; (b) G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of GÖ ttingen, Germany, 1997.

    23. [23]

      [23] J. Chen, J.Q. Sha, J. Peng, et al., Self-assembly of two novel bisupporting Kegginpolyoxometalate derivatives: hydrothermal synthesis and structure characterization of [Cu(2,20-bpy)2]2[HmXMo10Mo2O40] 2H2O (X=P, m=1; X=Si, m=2), J. Mol. Struct. 846 (2007) 128-133.

    24. [24]

      [24] X.Y. Yu, X.B. Cui, J. Lu, et al., Five inorganic-organic hybrids based on Keggin polyanion [SiMo12O40]4-: from 0D to 2D network, J. Solid State Chem. 209 (2014) 97-104.

    25. [25]

      [25] X.Y. Chen, Y.P. Chen, Z. Xia, et al., Synthesis, crystal structure of a-Keggin heteropolymolybdates with pyridine-2,6-dicarboxylate based frameworks, and associated RhB photocatalytic degradation and 2D-IR COS tests, Dalton Trans. 41 (2012) 10035-10042.

    26. [26]

      [26] X.L. Hao, Y.Y. Ma, Y.H. Wang, et al., New organic-inorganic hybrid assemblies based on metal-bis(betaine) coordination complexes and Keggin-type polyoxometalates, Inorg. Chem. Commun. 41 (2014) 19-24.

  • 加载中
    1. [1]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    2. [2]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    3. [3]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    4. [4]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    5. [5]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    6. [6]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    7. [7]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    8. [8]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    9. [9]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    10. [10]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    11. [11]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    12. [12]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    13. [13]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    14. [14]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    15. [15]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    16. [16]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    17. [17]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    18. [18]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    19. [19]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    20. [20]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

Metrics
  • PDF Downloads(0)
  • Abstract views(563)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return