Citation: Juan Feng, Ting Han, Mi-Qing Zhang, Yu Zhou, Qing-Qin Wu. Application of 2D fluorescence correlation method to investigate the dilution-induced heterogeneous distribution of the bound FMN in azoreductase[J]. Chinese Chemical Letters, ;2015, 26(2): 210-214. doi: 10.1016/j.cclet.2014.11.019 shu

Application of 2D fluorescence correlation method to investigate the dilution-induced heterogeneous distribution of the bound FMN in azoreductase

  • Corresponding author: Juan Feng, 
  • Received Date: 1 September 2014
    Available Online: 22 October 2014

    Fund Project:

  • AzoR is a homodimeric, flavin mononucleotide (FMN)-containing, NADH-dependent azoreductase from Escherichia coli. In this paper, we investigated the effect of the concentration of both AzoR and R59G on the spectral behavior of the bound FMN using two-dimensional fluorescence correlation spectra. Two cross peaks (530, 490) and (580, 530) were observed from the dilution-induced 2D asynchronous correlation map of wt AzoR, while only one cross peak appeared at (600, 530) for R59G mutant. This result indicated that the mutation at site 59 influenced the formation of dilution-induced intermediates. The specific activity of both AzoR and R59G mutant was unaffected by dilution when the enzyme concentration is below 1 mmol/L, which suggested that no significant dissociation of FMN occurred at low concentrations. Additionally, in order to explore the origin of these intermediates, we carried out a 2D correlation analysis using excitation wavelength-dependent fluorescence emission spectroscopy. The results showed that there coexisted two types of FMN that emitted fluorescence at 530 nm and 500 nm, respectively. Taken together, these results suggested that the 2D method is a very powerful method to identify the heterogeneous distribution of the bound FMN in solution.
  • 加载中
    1. [1]

      [1] A. Losi, W. Gartner, The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors, Annu. Rev. Plant Biol. 63 (2012) 49-72.

    2. [2]

      [2] D. Immeln, A. Weigel, T. Kottke, J.L. Pé rez Lustres, Primary events in the blue light sensor plant cryptochrome: intraprotein electron and proton transfer revealed by femtosecond spectroscopy, J. Am. Chem. Soc. 134 (2012) 12536-12546.

    3. [3]

      [3] M. Sugishima, H. Sato, Y. Higashimoto, et al., Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 2524-2529.

    4. [4]

      [4] F. Muller, The flavin redox-system and its biological function, Top. Curr. Chem. 108 (1983) 71-107.

    5. [5]

      [5] M. Nakanishi, C. Yatome, N. Ishida, Y. Kitade, Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase, J. Biol. Chem. 276 (2001) 46394-46399.

    6. [6]

      [6] C.J. Wang, N. Laurieri, A. Abuhammad, et al., Role of tyrosine 131 in the active site of paAzoR1, an azoreductase with specificity for the inflammatory bowel disease prodrug balsalazide, Acta Crystallogr. 66 (2010) 2-7.

    7. [7]

      [7] Y.Y. Yang, L.L. Lu, F. Gao, Y.H. Zhao, Characterization of an efficient catalytic and organic solvent-tolerant azoreductase toward methyl red from Shewanella oneidensis MR-1, Environ. Sci. Pollut. Res. 20 (2013) 3232-3239.

    8. [8]

      [8] M.K. Johansson, A.C. Wong, E.S. Armstrong, et al., BTI1, an azoreductase with pHdependent substrate specificity, Appl. Environ. Microbiol. 77 (2011) 4223-4225.

    9. [9]

      [9] O. Toshihiko, S. Takeshi, S. Reiko, et al., An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization, Appl. Microbiol. Biotechnol. 75 (2007) 377-386.

    10. [10]

      [10] K. Ito, M. Nakanishi, W.C. Lee, et al., Three-dimensional structure of AzoR from Escherichia coli. An oxireductase conserved in microorganisms, J. Biol. Chem. 281 (2006) 20567-20576.

    11. [11]

      [11] K. Ito, M. Nakanishi, W.C. Lee, et al., Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis, J. Biol. Chem. 283 (2008) 13889-13896.

    12. [12]

      [12] V. Brissos, N. Gonçalves, E.P. Melo, L.O. Martins, Improving kinetic or thermodynamic stability of anazoreductase by directed evolution, PLoSONE 9 (2014) e87209.

    13. [13]

      [13] Y.J.M. Bollen, A.H. Westphal, S. Lindhoud, W.J.H. van Berke, C.P.M. van Mierlo, Distant residues mediate picomolar binding affinity of a protein cofactor, Nat. Commun. 3 (2010) 1010.

    14. [14]

      [14] F. Tanaka, H. Chosrowjan, S. Taniguchi, et al., Donor-acceptor distance-dependence of photoinduced electron-transfer rate in flavoproteins, J. Phys. Chem. B 111 (2007) 5694-5699.

    15. [15]

      [15] H. Staudt, D. Oesterhelt, M. Gringinger, J. Wachtveitl, Ultrafast excited-state deactivation of flavins bound to dodecin, J. Biol. Chem. 287 (2012) 17637-17644.

    16. [16]

      [16] Y. He, G.F. Wang, J. Cox, L. Geng, Two-dimensional fluorescence correlation spectroscopy with modulated excitation, Anal. Chem. 73 (2001) 2302-2309.

  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    3. [3]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    4. [4]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    5. [5]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    6. [6]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    7. [7]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    8. [8]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    9. [9]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    10. [10]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    11. [11]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    12. [12]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    13. [13]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    14. [14]

      Haijiao LiuQiao FengYu HuangFeng WuYali LiuMinxia ShenXiao GuoWenting DaiWeining QiYifan ZhangLu LiQiyuan WangBianhong ZhouJianjun Li . Composition and size distribution of wintertime inorganic aerosols at ground and alpine regions of northwest China. Chinese Chemical Letters, 2024, 35(11): 109636-. doi: 10.1016/j.cclet.2024.109636

    15. [15]

      Yu-Qi CaoYing-Jie LuLi ZhangJing ZhangYin-Long Guo . Vacuum promoted on-tissue derivatization strategy: Unravelling spatial distribution of glycerides on tissue. Chinese Chemical Letters, 2024, 35(12): 109788-. doi: 10.1016/j.cclet.2024.109788

    16. [16]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    17. [17]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    18. [18]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    19. [19]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    20. [20]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

Metrics
  • PDF Downloads(0)
  • Abstract views(550)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return