Citation: Wen-Bin Chen, Jian-Bing Liu, Dao-Lei Dou, Fan-Bo Song, Lu-Yuan Li, Zhen Xi. Synthesis and screening of novel inositol phosphonate derivatives for anticancer functions in vitro[J]. Chinese Chemical Letters, ;2015, 26(3): 329-333. doi: 10.1016/j.cclet.2014.11.008 shu

Synthesis and screening of novel inositol phosphonate derivatives for anticancer functions in vitro

  • Corresponding author: Wen-Bin Chen,  Zhen Xi, 
  • Received Date: 5 September 2014
    Available Online: 17 October 2014

    Fund Project: This work was financially supported by Tianjin Municipal Natural Science Foundation (Key Program No. 12JCZDJC22000) (Key Program No. 12JCZDJC22000)

  • Phosphonates have been frequently used as suitable isosteric and isoelectronic replacements for biologically important phosphates in the development of drugs or drug candidates because of their stability toward the action of phosphatases and other enzymes. In this paper, 12 mono-phosphonate inositol compounds were prepared with phosphonate instead of phosphate by two kinds of strategies, nucleophilic substitution and Arbuzov rearrangement, respectively. All compounds were evaluated in vitro for their activity against non-small cell lung cancer (NSCLC) cell line A549. Two compounds (3ac and 3bb) exhibited good antitumor activity at 10 mg/mL.
  • 加载中
    1. [1]

      [1] M. Bennett, S.M.N. Onnebo, C. Azevedo, et al., Inositol pyrophosphates: metabolism and signaling, Cell. Mol. Life Sci. 63 (2006) 552-564.

    2. [2]

      [2] R.F. Irvine, M.J. Schell, Back in the water: the return of the inositol phosphates, Nat. Rev. Mol. Cell Biol. 2 (2001) 327-338.

    3. [3]

      [3] V. Gosein, G.J. Miller, Roles of phosphate recognition in inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) substrate binding and activation, J. Biol. Chem. 288 (2013) 26908-26913.

    4. [4]

      [4] F.S. Menniti, K.G. Oliver, J.W. Putney Jr., et al., Inositol phosphates and cell signaling: new views of InsP5 and InsP6, Trends Biochem. Sci. 18 (1993) 53-56.

    5. [5]

      [5] J.D. York, Regulation of nuclear processes by inositol polyphosphates, Biochim. Biophys. Acta 1761 (2006) 552-559.

    6. [6]

      [6] M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell Biol. 4 (2003) 517-529.

    7. [7]

      [7] L.A. Hanakahi, M. Bartlet-Jones, C. Chappell, et al., Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair, Cell 102 (2000) 721-729.

    8. [8]

      [8] J.M. Hilton, M. Plomann, B. Ritter, et al., Phosphorylation of a synaptic vesicleassociated protein by an inositol hexakisphosphate-regulated protein kinase, J. Biol. Chem. 276 (2001) 16341-16347.

    9. [9]

      [9] M. Vajanaphanich, C. Schultz, M.T. Rudolf, et al., Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P-4, Nature 371 (1994) 711-714.

    10. [10]

      [10] Y. Shi, A.N. Azab, M.N. Thompson, et al., Inositol phosphates and phosphoinositides in health and disease, in: A.L. Majumder, B.B. Biswas (Eds.), Subcellular Biochemistry, 2006, 265-292.

    11. [11]

      [11] M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21.

    12. [12]

      [12] R.F. Irvine, 20 years of Ins(1,4,5)P-3, and 40 years before, Nat. Rev. Mol. Cell Biol. 4 (2003) 586-590.

    13. [13]

      [13] M.J. Berridge, R.F. Irvine, Inositol trisphosphate, a novel 2nd messenger in cellular signal transduction, Nature 312 (1984) 315-321.

    14. [14]

      [14] K.M. Sureshan, A.M. Riley, A.M. Rossi, et al., Activation of IP3 receptors by synthetic bisphosphate ligands, Chem. Commun. (2009) 1204-1206.

    15. [15]

      [15] M.J. Berridge, Inositol trisphosphate and calcium signaling, Nature 361 (1993) 315-325.

    16. [16]

      [16] A.M. Riley, A.J. Laude, C.W. Taylor, et al., Dimers of D-myo-inositol 1,4,5-trisphosphate: design, synthesis, and interaction with Ins(1,4,5)P-3 receptors, Bioconjugate Chem. 15 (2004) 278-289.

    17. [17]

      [17] M. Takahashi, T. Kagasaki, T. Hosoya, et al., Adenophostin-a and adenophostin-b -potent agonists of inositol-1,4,5-trisphosphate receptor produced by penicilliumbrevicompactum -taxonomy, fermentation, isolation, physicochemical and biological properties, J. Antibiot. 46 (1993) 1643-1647.

    18. [18]

      [18] C.E. Adkins, F. Wissing, B.V.L. Potter, et al., Rapid activation and partial inactivation of inositol trisphosphate receptors by adenophostin A, Biochem. J. 352 (2000) 929-933.

    19. [19]

      [19] V. Correa, A.M. Riley, S. Shuto, et al., Structural determinants of adenophostin A activity at inositol trisphosphate receptors, Mol. Pharmacol. 59 (2001) 1206-1215.

    20. [20]

      [20] S. Shuto, K. Tatani, Y. Ueno, et al., Synthesis of adenophostin analogues lacking the adenine moiety as novel potent IP3 receptor ligands: some structural requirements for the significant activity of adenophostin A, J. Org. Chem. 63 (1998) 8815-8824.

    21. [21]

      [21] J. Hirota, T. Michikawa, A. Miyawaki, et al., Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptortype-1, FEBS Lett. 368 (1995) 248-252.

    22. [22]

      [22] M. Takahashi, K. Tanzawa, S. Takahashi, Adenophostins, newly discovered metabolites of penicillium-brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 269 (1994) 369-372.

    23. [23]

      [23] F. Song, J. Zhang, Y. Zhao, et al., Synthesis and antitumor activity of inositol phosphotriester analogues, Org. Biomol. Chem. 10 (2012) 3642-3654.

    24. [24]

      [24] R. Engel, Phosphonates as analogues of natural phosphates, Chem. Rev. 77 (1977) 349-367.

    25. [25]

      [25] A.J. Ganzhorn, J. Hoflack, P.D. Pelton, et al., Inhibition of myo-inositol monophosphatase isoforms by aromatic phosphonates, Bioorg. Med. Chem. 6 (1998) 1865-1874.

    26. [26]

      [26] W. Huang, H. Zhang, F. Davrazou, et al., Stabilized phosphatidylinositol-5-phosphate analogues as ligands for the nuclear protein ING2: chemistry, biology, and molecular modeling, J. Am. Chem. Soc. 129 (2007) 6498-6506.

    27. [27]

      [27] M.S. Shashidhar, J.F. Keana, J.J. Volwerk, et al., Synthesis of phosphonate derivatives of myo-inositol for use in biochemical studies of inositol-binding proteins, Chem. Phys. Lipids 53 (1990) 103-113.

    28. [28]

      [28] J.R. Falck, A. Abdali, S.J. Wittenberger, Total synthesis of the 5-methylenephosphonate analog of D-myo-inositol 1,4,5-trisphosphate, J. Chem. Soc. Chem. Commun. (1990) 953-955.

    29. [29]

      [29] N.S. Keddie, Y.L. Ye, T. Aslam, et al., Development of inositol-based antagonists for the D-myo-inositol 1,4,5-trisphosphate receptor, Chem. Commun. 47 (2011) 242-244.

    30. [30]

      [30] D. Vizitiu, A.G. Kriste, A.S. Campbell, et al., Inhibition of phosphatidylinositolspecific phospholipase C: studies on synthetic substrates, inhibitors and a synthetic enzyme, J. Mol. Recognit. 9 (1996) 197-209.

    31. [31]

      [31] M.S. Shashidhar, J.J. Volwerk, J.F. Keana, et al., Inhibition of phosphatidylinositolspecific phospholipase C by phosphonate substrate analogues, Biochim. Biophys. Acta 1042 (1990) 410-412.

    32. [32]

      [32] Y. Wu, C. Zhou, M.F. Roberts, Stereocontrolled syntheses of water-soluble inhibitors of phosphatidylinositol-specific phospholipase C: inhibition enhanced by an interface, Biochemistry 36 (1997) 356-363.

    33. [33]

      [33] W. Xie, H.R. Peng, D.I. Kim, et al., Structure-activity relationship of aza-steroids as PI-PLC inhibitors, Bioorg. Med. Chem. 9 (2001) 1073-1083.

    34. [34]

      [34] M. Ryan, M.P. Smith, T.K. Vinod, et al., Synthesis, structure-activity relationships, and the effect of polyethylene glycol on inhibitors of phosphatidylinositol-specific phospholipase C from Bacillus cereus, J. Med. Chem. 39 (1996) 4366-4376.

    35. [35]

      [35] W.G. Xie, H.R. Peng, L.H. Zalkow, et al., 3β-Hydroxy-6-aza-cholestane and related analogues as phosphatidylinositol specific phospholipase C (PI-PLC) inhibitors with antitumor activity, Bioorg. Med. Chem. 8 (2000) 699-706.

    36. [36]

      [36] P. Nasomjai, D. O’Hagan, A.M.Z. Slawin, Synthesis of phosphonate and phostone analogues of ribose-1-phosphates, Beilstein J. Org. Chem. 5 (2009).

    37. [37]

      [37] W.B. Wan, J.R. Beadle, C. Hartline, et al., Comparison of the antiviral activities of alkoxyalkyl and alkyl esters of cidofovir against human and murine cytomegalovirus replication in vitro, Antimicrob. Agents Chemother. 49(2005) 656-662.

    38. [38]

      [38] I.E. Glowacka, J. Balzarini, A.E. Wroblewski, Synthesis and biological evaluation of novel 1,2,3-triazolonucleotides, Arch. Pharm. 346 (2013) 278-291.

    39. [39]

      [39] E. De Clercq, A. Holy, Acyclic nucleoside phosphonates: a key class of antiviral drugs, Nat. Rev. Drug Discov. 4 (2005) 928-940.

    40. [40]

      [40] F. Song, J. Zhang, Q. Cui, et al., Synthesis and antitumour activity of inositol phosphonate analogues, Tetrahedron Lett. 53 (2012) 1102-1104.

    41. [41]

      [41] W.L.F. Armarego, C.L.L. Chai, Purification of Laboratory Chemicals, fifth ed., Butterworth-Heinemann, Burlington, MA, USA, 2003.

    42. [42]

      [42] A.F. Kluge, Diethyl [(2-tetrahydropyranyloxy)methyl] phosphonate, Org. Synth. 7(1990) 160-161.

    43. [43]

      [43] H. Ikeda, E. Abushanab, V.E. Marquez, The assembly of beta-methylene-TAD, a metabolically stable analogue of the antitumor agent TAD, by the stepwise esterification of monodeprotected methylenebis(phosphonate) benzyl esters under Mitsunobu conditions, Bioorg. Med. Chem. Lett. 9 (1999) 3069-3074.

    44. [44]

      [44] Y.B. Xu, M.T. Flavin, Z.Q. Xu, Preparation of new Wittig reagents and their application to the synthesis of a,β-unsaturated phosphonates, J. Org. Chem.61 (1996) 7697-7701.

    45. [45]

      [45] P.J. Stang, M. Hanack, L.R. Subramanian, Perfluoroalkanesulfonic esters: methods of preparation and applications in organic chemistry, Synthesis (1982) 85-126.

    46. [46]

      [46] D.P. Phillion, S.S. Andrew, Synthesis and reactivity of diethyl phosphonomethyltriflate, Tetrahedron Lett. 27 (1986) 1477-1480.

    47. [47]

      [47] A.K. Bhattacharya, G. Thyagarajan, Michaelis-Arbuzov rearrangement, Chem. Rev. 81 (1981) 415-430.

  • 加载中
    1. [1]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    2. [2]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    3. [3]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    4. [4]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    5. [5]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    6. [6]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    7. [7]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    8. [8]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    9. [9]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    10. [10]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    11. [11]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    12. [12]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    13. [13]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    14. [14]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    15. [15]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    16. [16]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    17. [17]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    18. [18]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    19. [19]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    20. [20]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

Metrics
  • PDF Downloads(0)
  • Abstract views(600)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return