Citation: Wen-Bin Chen, Jian-Bing Liu, Dao-Lei Dou, Fan-Bo Song, Lu-Yuan Li, Zhen Xi. Synthesis and screening of novel inositol phosphonate derivatives for anticancer functions in vitro[J]. Chinese Chemical Letters, ;2015, 26(3): 329-333. doi: 10.1016/j.cclet.2014.11.008
-
Phosphonates have been frequently used as suitable isosteric and isoelectronic replacements for biologically important phosphates in the development of drugs or drug candidates because of their stability toward the action of phosphatases and other enzymes. In this paper, 12 mono-phosphonate inositol compounds were prepared with phosphonate instead of phosphate by two kinds of strategies, nucleophilic substitution and Arbuzov rearrangement, respectively. All compounds were evaluated in vitro for their activity against non-small cell lung cancer (NSCLC) cell line A549. Two compounds (3ac and 3bb) exhibited good antitumor activity at 10 mg/mL.
-
-
[1]
[1] M. Bennett, S.M.N. Onnebo, C. Azevedo, et al., Inositol pyrophosphates: metabolism and signaling, Cell. Mol. Life Sci. 63 (2006) 552-564.
-
[2]
[2] R.F. Irvine, M.J. Schell, Back in the water: the return of the inositol phosphates, Nat. Rev. Mol. Cell Biol. 2 (2001) 327-338.
-
[3]
[3] V. Gosein, G.J. Miller, Roles of phosphate recognition in inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) substrate binding and activation, J. Biol. Chem. 288 (2013) 26908-26913.
-
[4]
[4] F.S. Menniti, K.G. Oliver, J.W. Putney Jr., et al., Inositol phosphates and cell signaling: new views of InsP5 and InsP6, Trends Biochem. Sci. 18 (1993) 53-56.
-
[5]
[5] J.D. York, Regulation of nuclear processes by inositol polyphosphates, Biochim. Biophys. Acta 1761 (2006) 552-559.
-
[6]
[6] M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell Biol. 4 (2003) 517-529.
-
[7]
[7] L.A. Hanakahi, M. Bartlet-Jones, C. Chappell, et al., Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair, Cell 102 (2000) 721-729.
-
[8]
[8] J.M. Hilton, M. Plomann, B. Ritter, et al., Phosphorylation of a synaptic vesicleassociated protein by an inositol hexakisphosphate-regulated protein kinase, J. Biol. Chem. 276 (2001) 16341-16347.
-
[9]
[9] M. Vajanaphanich, C. Schultz, M.T. Rudolf, et al., Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P-4, Nature 371 (1994) 711-714.
-
[10]
[10] Y. Shi, A.N. Azab, M.N. Thompson, et al., Inositol phosphates and phosphoinositides in health and disease, in: A.L. Majumder, B.B. Biswas (Eds.), Subcellular Biochemistry, 2006, 265-292.
-
[11]
[11] M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21.
-
[12]
[12] R.F. Irvine, 20 years of Ins(1,4,5)P-3, and 40 years before, Nat. Rev. Mol. Cell Biol. 4 (2003) 586-590.
-
[13]
[13] M.J. Berridge, R.F. Irvine, Inositol trisphosphate, a novel 2nd messenger in cellular signal transduction, Nature 312 (1984) 315-321.
-
[14]
[14] K.M. Sureshan, A.M. Riley, A.M. Rossi, et al., Activation of IP3 receptors by synthetic bisphosphate ligands, Chem. Commun. (2009) 1204-1206.
-
[15]
[15] M.J. Berridge, Inositol trisphosphate and calcium signaling, Nature 361 (1993) 315-325.
-
[16]
[16] A.M. Riley, A.J. Laude, C.W. Taylor, et al., Dimers of D-myo-inositol 1,4,5-trisphosphate: design, synthesis, and interaction with Ins(1,4,5)P-3 receptors, Bioconjugate Chem. 15 (2004) 278-289.
-
[17]
[17] M. Takahashi, T. Kagasaki, T. Hosoya, et al., Adenophostin-a and adenophostin-b -potent agonists of inositol-1,4,5-trisphosphate receptor produced by penicilliumbrevicompactum -taxonomy, fermentation, isolation, physicochemical and biological properties, J. Antibiot. 46 (1993) 1643-1647.
-
[18]
[18] C.E. Adkins, F. Wissing, B.V.L. Potter, et al., Rapid activation and partial inactivation of inositol trisphosphate receptors by adenophostin A, Biochem. J. 352 (2000) 929-933.
-
[19]
[19] V. Correa, A.M. Riley, S. Shuto, et al., Structural determinants of adenophostin A activity at inositol trisphosphate receptors, Mol. Pharmacol. 59 (2001) 1206-1215.
-
[20]
[20] S. Shuto, K. Tatani, Y. Ueno, et al., Synthesis of adenophostin analogues lacking the adenine moiety as novel potent IP3 receptor ligands: some structural requirements for the significant activity of adenophostin A, J. Org. Chem. 63 (1998) 8815-8824.
-
[21]
[21] J. Hirota, T. Michikawa, A. Miyawaki, et al., Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptortype-1, FEBS Lett. 368 (1995) 248-252.
-
[22]
[22] M. Takahashi, K. Tanzawa, S. Takahashi, Adenophostins, newly discovered metabolites of penicillium-brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor, J. Biol. Chem. 269 (1994) 369-372.
-
[23]
[23] F. Song, J. Zhang, Y. Zhao, et al., Synthesis and antitumor activity of inositol phosphotriester analogues, Org. Biomol. Chem. 10 (2012) 3642-3654.
-
[24]
[24] R. Engel, Phosphonates as analogues of natural phosphates, Chem. Rev. 77 (1977) 349-367.
-
[25]
[25] A.J. Ganzhorn, J. Hoflack, P.D. Pelton, et al., Inhibition of myo-inositol monophosphatase isoforms by aromatic phosphonates, Bioorg. Med. Chem. 6 (1998) 1865-1874.
-
[26]
[26] W. Huang, H. Zhang, F. Davrazou, et al., Stabilized phosphatidylinositol-5-phosphate analogues as ligands for the nuclear protein ING2: chemistry, biology, and molecular modeling, J. Am. Chem. Soc. 129 (2007) 6498-6506.
-
[27]
[27] M.S. Shashidhar, J.F. Keana, J.J. Volwerk, et al., Synthesis of phosphonate derivatives of myo-inositol for use in biochemical studies of inositol-binding proteins, Chem. Phys. Lipids 53 (1990) 103-113.
-
[28]
[28] J.R. Falck, A. Abdali, S.J. Wittenberger, Total synthesis of the 5-methylenephosphonate analog of D-myo-inositol 1,4,5-trisphosphate, J. Chem. Soc. Chem. Commun. (1990) 953-955.
-
[29]
[29] N.S. Keddie, Y.L. Ye, T. Aslam, et al., Development of inositol-based antagonists for the D-myo-inositol 1,4,5-trisphosphate receptor, Chem. Commun. 47 (2011) 242-244.
-
[30]
[30] D. Vizitiu, A.G. Kriste, A.S. Campbell, et al., Inhibition of phosphatidylinositolspecific phospholipase C: studies on synthetic substrates, inhibitors and a synthetic enzyme, J. Mol. Recognit. 9 (1996) 197-209.
-
[31]
[31] M.S. Shashidhar, J.J. Volwerk, J.F. Keana, et al., Inhibition of phosphatidylinositolspecific phospholipase C by phosphonate substrate analogues, Biochim. Biophys. Acta 1042 (1990) 410-412.
-
[32]
[32] Y. Wu, C. Zhou, M.F. Roberts, Stereocontrolled syntheses of water-soluble inhibitors of phosphatidylinositol-specific phospholipase C: inhibition enhanced by an interface, Biochemistry 36 (1997) 356-363.
-
[33]
[33] W. Xie, H.R. Peng, D.I. Kim, et al., Structure-activity relationship of aza-steroids as PI-PLC inhibitors, Bioorg. Med. Chem. 9 (2001) 1073-1083.
-
[34]
[34] M. Ryan, M.P. Smith, T.K. Vinod, et al., Synthesis, structure-activity relationships, and the effect of polyethylene glycol on inhibitors of phosphatidylinositol-specific phospholipase C from Bacillus cereus, J. Med. Chem. 39 (1996) 4366-4376.
-
[35]
[35] W.G. Xie, H.R. Peng, L.H. Zalkow, et al., 3β-Hydroxy-6-aza-cholestane and related analogues as phosphatidylinositol specific phospholipase C (PI-PLC) inhibitors with antitumor activity, Bioorg. Med. Chem. 8 (2000) 699-706.
-
[36]
[36] P. Nasomjai, D. O’Hagan, A.M.Z. Slawin, Synthesis of phosphonate and phostone analogues of ribose-1-phosphates, Beilstein J. Org. Chem. 5 (2009).
-
[37]
[37] W.B. Wan, J.R. Beadle, C. Hartline, et al., Comparison of the antiviral activities of alkoxyalkyl and alkyl esters of cidofovir against human and murine cytomegalovirus replication in vitro, Antimicrob. Agents Chemother. 49(2005) 656-662.
-
[38]
[38] I.E. Glowacka, J. Balzarini, A.E. Wroblewski, Synthesis and biological evaluation of novel 1,2,3-triazolonucleotides, Arch. Pharm. 346 (2013) 278-291.
-
[39]
[39] E. De Clercq, A. Holy, Acyclic nucleoside phosphonates: a key class of antiviral drugs, Nat. Rev. Drug Discov. 4 (2005) 928-940.
-
[40]
[40] F. Song, J. Zhang, Q. Cui, et al., Synthesis and antitumour activity of inositol phosphonate analogues, Tetrahedron Lett. 53 (2012) 1102-1104.
-
[41]
[41] W.L.F. Armarego, C.L.L. Chai, Purification of Laboratory Chemicals, fifth ed., Butterworth-Heinemann, Burlington, MA, USA, 2003.
-
[42]
[42] A.F. Kluge, Diethyl [(2-tetrahydropyranyloxy)methyl] phosphonate, Org. Synth. 7(1990) 160-161.
-
[43]
[43] H. Ikeda, E. Abushanab, V.E. Marquez, The assembly of beta-methylene-TAD, a metabolically stable analogue of the antitumor agent TAD, by the stepwise esterification of monodeprotected methylenebis(phosphonate) benzyl esters under Mitsunobu conditions, Bioorg. Med. Chem. Lett. 9 (1999) 3069-3074.
-
[44]
[44] Y.B. Xu, M.T. Flavin, Z.Q. Xu, Preparation of new Wittig reagents and their application to the synthesis of a,β-unsaturated phosphonates, J. Org. Chem.61 (1996) 7697-7701.
-
[45]
[45] P.J. Stang, M. Hanack, L.R. Subramanian, Perfluoroalkanesulfonic esters: methods of preparation and applications in organic chemistry, Synthesis (1982) 85-126.
-
[46]
[46] D.P. Phillion, S.S. Andrew, Synthesis and reactivity of diethyl phosphonomethyltriflate, Tetrahedron Lett. 27 (1986) 1477-1480.
-
[47]
[47] A.K. Bhattacharya, G. Thyagarajan, Michaelis-Arbuzov rearrangement, Chem. Rev. 81 (1981) 415-430.
-
[1]
-
-
[1]
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018
-
[2]
Tong Tong , Lezong Chen , Siying Wu , Zhong Cao , Yuanbin Song , Jun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689
-
[3]
Wenkai Liu , Yanxian Hou , Weijian Liu , Ran Wang , Shan He , Xiang Xia , Chengyuan Lv , Hua Gu , Qichao Yao , Qingze Pan , Zehou Su , Danhong Zhou , Wen Sun , Jiangli Fan , Xiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631
-
[4]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[5]
Shangqian Zhang , Jiaxuan Li , Xuan Hu , Zelong Chen , Junliang Dong , Chenhao Hu , Shuang Chao , Yinghua Lv , Yuxin Pei , Zhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314
-
[6]
Ying-Di Hao , Zhi-Qian Lin , Xiao-Yu Guo , Jiao Liang , Can-Kun Luo , Qian-Tao Wang , Li Guo , Yong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834
-
[7]
Xiao-Tong Sun , Hao-Fei Ni , Yi Zhang , Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212
-
[8]
Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020
-
[9]
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077
-
[10]
Wenling Yuan , Fengli Li , Zhe Chen , Qiaoxin Xu , Zhenhua Guan , Nanyu Yao , Zhengxi Hu , Junjun Liu , Yuan Zhou , Ying Ye , Yonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788
-
[11]
Wenyu Gao , Liming Zhang , Chuang Zhao , Lixiang Liu , Xingran Yang , Jinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447
-
[12]
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
-
[13]
Huashan Huang , Jingze Chen , Luyun Zhang , Hong Yan , Siqi Li , Fen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992
-
[14]
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
-
[15]
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
-
[16]
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
-
[17]
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
-
[18]
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
-
[19]
Yuanzheng Wang , Chen Zhang , Shuyan Han , Xiaoli Kong , Changyun Quan , Jun Wu , Wei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578
-
[20]
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(600)
- HTML views(32)