Citation: Dao-Lin Wang, Dan Wu, Wei Zhao, Yong-Yang Wang, Jian-Ying Wu. An efficient synthesis of benzo[b]benzofurano[2,3-e]-[1,6]naphthyridine-8-ones[J]. Chinese Chemical Letters, ;2015, 26(2): 251-254. doi: 10.1016/j.cclet.2014.11.005
-
An efficient method for the synthesis of benzo[b]benzofurano[2,3-e][1,6]naphthyridine-8-one derivatives has been developed via Pictet-Spengler reaction of 4-(3-aminobenzofuran-2-yl)quinoline- 2-ones, which could be obtained from alkylation of 4-bromomethylquinoline-2-ones with salicylonitrile and subsequent Thorpe-Ziegler isomerization, with aromatic aldehydes under p-TsOH as catalyst in good yields.
-
-
[1]
[1] A. Pictet, T.T. Spengler, ü ber die bildung von isochinolin-derivaten durch einwirkung von methylal auf phenyl-thylamin, phenyl-alanin und tyrosin, Ber. Dtsch. Chem. Ges. 44 (1911) 2030-2036.
-
[2]
[2] (a) S.W. Youn, The Pictet-Spengler reaction: efficient carbon-carbon bond forming reaction in heterocyclic synthesis, Org. Prep. Proc. Int. 38 (2006) 505-591; (b) B. Kundu, P.K. Agarwal, S.K. Sharma, et al., Pictet-Spengler reaction revisited: engineering of tetherd biheterocycles into annulated polyheterocycles, Curr. Org. Synth. 9 (2012) 357-376.
-
[3]
[3] H. Nakamura, J. Kobayashi, Y. Ohizumi, Isolation and structure of aaptamine a novel heteroaromatic substance possessing a-blocking activity from the sea sponge Aaptos, Tetrahedron Lett. 23 (1982) 5555-5558.
-
[4]
[4] J.J. Bowling, H.K. Pennaka, K. Ivey, et al., Antiviral and anticancer optimization studies of the DNA-binding marine natural product aaptamine, Chem. Biol. Drug Des. 71 (2008) 205-215.
-
[5]
[5] W. Gul, N.L. Hammond, M. Yousaf, et al., Modification at the C9 position of the marine natural product isoaaptamine and the impact on HIV-1, mycobacterial, and tumor cell activity, Bioorg. Med. Chem. 14 (2006) 8495-8505.
-
[6]
[6] G.R. Pettit, H. Hoffmann, J. McNulty, et al., Antineoplastic agents 380. Isolation and X-ray crystal structure determination of isoaaptamine from the Republic of Singapore Hymeniacidon sp. and conversion to the phosphate prodrug hystatin 1, J. Nat. Prod. 67 (2004) 506-509.
-
[7]
[7] L.W. Deady, M.L. Rogers, L. Zhuang, et al., Synthesis and cytotoxic activity of carboxamide derivatives of benzo[b][1,6]naphthyridin-(5H)ones, Bioorg. Med. Chem. 13 (2005) 1341-1355.
-
[8]
[8] (a) E.L. Larghi, M.L. Bohn, T.S. Kaufman, Aaptamine and related products. Their isolation, chemical syntheses, and biological activity, Tetrahedron 65 (2009) 4257-4282; (b) Y. Takahashi, T. Kubota, A. Shibazaki, et al., Nakijinamines C-E, new heteroaromatic alkaloids from the sponge Suberites species, Org. Lett. 13 (2011) 3016-3019; (c) L. Caixia, T. Xuli, L. Pinglin, et al., Suberitine A-D, four new cytotoxic dimeric aaptamine alkaloids from the marine sponge Aaptos suberitoides, Org. Lett. 14 (2012) 1994-1997.
-
[9]
[9] C. Mukhopadhyay, P. Das, R.J. Butcher, An expeditious and efficient synthesis of highly functionalized [1,6]naphthyridines under catalyst-free conditions in aqueous medium, Org. Lett. 13 (2011) 4664-4667.
-
[10]
[10] P.W. Phuan, M.C. Kozlowski, Convenient preparation of naphthyridines from halopyridines: sequential Heck coupling and cyclization, Tetrahedron Lett. 42 (2001) 3963-3965.
-
[11]
[11] (a) A. Chandra, B. Singh, S. Upadhyay, et al., Copper-free Sonogashira coupling of 2-chloroquinolines with phenyl acetylene and quick annulation to benzo[b][1,6]naphthyridine derivatives in aqueous ammonia, Tetrahedron 64 (2008) 11680-11685; (b) R.M. Singh, R. Kumar, N. Sharma, et al., Palladium-catalyzed one-pot synthesis of benzo[b][1,6]naphthyridines via Sonogashira coupling and annulation reactions from 2-chloroquinoline-3-carbonitriles, Tetrahedron 69 (2013) 9443-9450.
-
[12]
[12] M. Piltan, I. Yavari, L. Moradi, Tandem synthesis of functionalized hexaalkyl benzoisoquinolinopyrrolonaphthyridine-hexacarboxylate, via isoquinoline based multi-component reaction, Chin. Chem. Lett. 24 (2013) 979-983.
-
[13]
[13] (a) P. Cagniant, D. Cagniant, Recent advances in the chemistry of benzo[b]furan and its derivatives. Part I: Occurrence and synthesis, Adv. Heterocycl. Chem. 18 (1975) 337-482; (b) F. Marion, D.E. Williams, B.O. Patrick, et al., Liphagal, a selective inhibitor of PI3 kinase a isolated from the sponge Aka coralliphaga: structure elucidation and biomimetic synthesis, Org. Lett. 8 (2006) 321-324.
-
[14]
[14] (a) W. Friedrichsen, Furans and their benzo derivatives: synthesis, in: C.W. Bird, A.R. Katritzky, C.W. Rees, E.F.V. Scriven (Eds.), Comprehensive Heterocyclic Chemistry II, vol. 2, Pergamon, London, 1996, pp. 368-378; (b) C. Macleod, G.J. Mckiernan, E.J. Guthrie, et al., Synthesis of 2-substituted benzofurans and indoles using functionalized titanium benzylidene reagents on solid phase, J. Org. Chem. 68 (2003) 387-401; (c) M.C. Willis, D. Talor, A.T. Gillmore, Palladium-catalyzed intramolecular Oarylation of enolates: application to benzo[b]furan synthesis, Org. Lett. 6 (2004) 4755-4757; (d) K.K. Park, J. Jeong, Facile synthesis of regio-isomeric naphthofurans and benzodifurans, Tetrahedron 61 (2005) 545-553.
-
[15]
[15] (a) D.L. Wang, S.F. Li, W. Li, et al., An efficient synthesis of 3-(guaiazulene-1-yl)succinimides by addition of guaiazulene to maleimides, Chin. Chem. Lett. 22 (2011) 789-792; (b) D.L. Wang, Q.T. Cui, S.S. Feng, et al., A new synthesis approach to azuleno[2,1-b]pyridine-4(1H)-ones, Heterocyles 85 (2012) 697-704; (c) D.L. Wang, Z. Dong, Q.T. Cui, et al., Synthesis of some pyrazole-fused pyrido[ 3,2-a]azulenes, Heterocyles 87 (2013) 2343-2350; (d) D.L. Wang, Z. Dong, Z. Liu, et al., Efficient one-pot synthesis of 1,4-dihydropyridino[ 3,2-c]coumarins, Chin. J. Org. Chem. 34 (2014) 783-787.
-
[16]
[16] (a) D.J. Cook, R.E. Bowen, E. Daniels, Bromination studies of alkyI-substituted 2-pyridones and 2-quinolones, J. Org. Chem. 26 (1961) 4949-4955; (b) L.J. Zhang, H. Zhang, Y.H. Yang, et al., Synthesis of diethyl ribamipide carboxylate, J. Wuhan Inst. Technol. 31 (2009) 23-25.
-
[17]
[17] Physical and spectral (IR, NMR, Anal.) data: 5a: Mp 280-282 8C. IR (KBr, cm-1): 1680 (C5O). 1H NMR (400 MHz, CDCl3): 3.69 (s, 3H), 7.42-7.54 (m, 8H), 7.63-7.71 (m, 2H), 7.78 (d, 1H, J=8.4 Hz), 8.37 (d, 1H, J=7.6 Hz), 9.37 (d, 1H, J=8.0 Hz). 13C NMR (100 MHz, CDCl3): 30.3, 112.1, 112.5, 114.5, 114.9, 116.7, 122.7, 123.2, 124.1, 124.6, 127.6, 127.9, 128.1, 128.4, 129.7, 129.9, 131.9, 132.3, 139.9, 143.9, 158.3, 159.2, 159.9. Anal. Calcd. for C25H16N2O2: C 79.77, H 4.28, N 7.44. Found: C 79.84, H 4.38, N 7.56; 5b: Mp 284-286 8C. IR (KBr, cm-1): 1684 (C5O). 1H NMR (400 MHz, CDCl3): 2.45 (s, 3H), 3.71 (s, 3H), 7.30-7.32 (m, 2H), 7.42-7.50 (m, 5H), 7.64-7.71 (m, 2H), 7.79 (d, 1H, J=8.0 Hz), 8.38 (d, 1H, J=7.6 Hz), 9.38 (d, 1H, J=8.0 Hz). 13C NMR (100 MHz, CDCl3): 21.7, 30.5, 112.1, 112.4, 114.4, 114.9, 115.8, 116.5, 122.2, 122.5, 123.1, 123.9, 124.4, 127.8, 128.3, 128.9, 129.8, 131.7, 132.0, 139.8, 143.6, 158.3, 159.6, 160.2. Anal. Calcd. for C26H18N2O2: C 79.98, H 4.65, N 7.17. Found: C 80.15, H 4.79, N 7.26; 5c: Mp 285-287 8C. IR (KBr, cm-1): 1675 (C5O). 1H NMR (400 MHz, CDCl3): 3.66 (s, 3H), 3.69 (s, 3H), 6.99-7.01 (m, 1H), 7.14-7.15 (m, 1H), 7.46-7.50 (m, 5H), 7.65-7.67 (m, 2H), 7.79 (d, 1H, J=8.4 Hz), 8.44 (d, 1H, J=7.6 Hz), 8.40 (d, 1H, J=8.0 Hz). 13C NMR (100 MHz, CDCl3): 30.2, 55.4, 110.4, 110.6, 112.0, 112.4, 114.3, 114.8, 118.1, 120.6, 121.0, 122.4, 122.9, 123.8, 124.4, 128.4, 128.9, 129.6, 129.8, 131.6, 131.9, 139.9, 143.9, 156.6, 158.1, 159.9. Anal. Calcd. for C26H18N2O3: C 76.83, H 4.46, N 6.89. Found: C 76.94, H 4.58, N 6.96; 5d: Mp 289-290 8C. IR (KBr, cm-1): 1684 (C5O). 1H NMR (400 MHz, CDCl3): 3.71 (s, 3H), 3.86 (s, 3H), 7.01 (s, 1H), 7.07 (d, 1H, J=7.6 Hz), 7.40-7.43 (m, 2H), 7.45-7.51 (m, 3H), 7.68-7.71 (m, 2H), 7.80 (d, 1H, J=8.4 Hz), 8.40 (d, 1H, J=7.6 Hz), 9.39 (d, 1H, J=8.0 Hz). 13C NMR (100 MHz, CDCl3): 30.3, 55.3, 113.1, 113.4, 113.9, 114.4, 114.9, 115.8, 116.6, 120.6, 121.0, 122.5, 123.1, 123.9, 124.4, 127.8, 128.5, 129.0, 129.6, 129.8, 130.1, 139.9, 143.7, 158.3, 159.2, 159.9. Anal. Calcd. for C26H18N2O3: C 76.83, H 4.46, N 6.89. Found: C 76.96, H 4.57, N 6.99; 5e: Mp 293-295 8C. IR (KBr, cm-1): 1686 (C5O). 1H NMR (400 MHz, CDCl3): 3.71 (s, 3H), 3.87 (s, 3H), 7.03 (d, 2H, J=7.6 Hz), 7.62-7.66 (m, 5H), 7.69-7.71 (m, 2H), 7.77 (d, 1H, J=8.4 Hz), 8.38 (d, 1H, J=7.6 Hz), 9.37 (d, 1H, J=8.0 Hz). 13C NMR (100 MHz, CDCl3): 30.3, 55.1, 112.1, 112.4, 113.2, 113.4, 114.4, 114.8, 116.4, 122.4, 122.6, 123.0, 123.9, 124.4, 129.5, 129.8, 130.0, 131.7, 132.0, 139.8, 143.6, 158.3, 159.2, 160.2. Anal. Calcd. for C26H18N2O3: C 76.83, H 4.46, N 6.89. Found: C 76.98, H 4.54, N 7.02; 5f:Mp 296-298 8C. IR (KBr, cm-1): 1673 (C5O). 1H NMR (400 MHz, CDCl3): 3.73 (s, 3H), 3.93 (s, 3H), 3.95 (s, 3H), 6.98-6.99 (m, 1H), 7.01-7.02 (m, 2H), 7.07-7.08 (m, 3H), 7.09-7.12 (m, 2H), 7.14 (d, 1H, J=7.6 Hz), 8.44 (d, 1H, J=7.6 Hz), 9.40 (d, 1H, J=8.0 Hz). 13C NMR (100 MHz, CDCl3): 30.5, 55.7, 55.9, 110.4, 110.6, 111.7, 112.1, 112.4, 114.4, 114.9, 115.7, 116.5, 121.0, 121.5, 122.6, 123.1, 124.0, 124.5, 129.6, 129.8, 131.9, 132.2, 143.7, 148.4, 158.3, 158.9, 160.0. Anal. Calcd. for C27H20N2O4: C 74.30, H 4.62, N 6.42. Found: C 74.45, H 4.74, N 6.58; 5g: Mp >300℃. IR (KBr, cm-1): 1675 (C5O). 1H NMR (400 MHz, CDCl3): 3.67 (s, 3H), 3.74 (s, 3H), 3.93 (s, 3H), 3.97 (s, 3H), 6.64 (s, 1H), 7.11 (s, 1H), 7.46-7.48 (m, 4H), 7.71-7.76 (m, 2H), 7.82-7.84 (m, 1H), 9.43 (d, 1H, J=8.0 Hz). 13C NMR (100 MHz, CDCl3): 30.3, 55.1, 112.1, 112.4, 113.2, 113.4, 114.4, 114.8, 116.4, 122.4, 122.6, 123.0, 123.9, 124.4, 129.5, 129.8, 130.0, 131.7, 132.0, 139.8, 143.6, 158.3, 159.2, 160.2. Anal. Calcd. for C28H22N2O5: C 72.09, H 4.75, N 6.01. Found: C 72.14, H 4.83, N 6.13; 5h: Mp >300℃. IR (KBr, cm-1): 1687 (C5O). 1H NMR (400 MHz, CDCl3): 3.73 (s, 3H), 7.47-7.53 (m, 7H), 7.66-7.68 (m, 2H), 7.81 (d, 1H, J=8.4 Hz), 8.35 (d, 1H, J=8.0 Hz), 9.40 (d, 1H, J=8.0 Hz). 13C NMR (100 MHz, CDCl3): 30.5, 112.2, 112.5, 112.7, 114.5, 114.9, 120.7, 122.0, 122.3, 122.7, 123.2, 124.0, 127.7, 128.3, 129.4, 129.6, 129.8, 129.9, 144.2, 144.3, 158.2, 158.3, 168.3. Anal. Calcd. for C25H15ClN2O2: C 73.08, H 3.68, N 6.82. Found: C 73.16, H 3.84, N 6.94; 5i: Mp >300℃. IR (KBr, cm-1): 3410 (NH), 1689 (C5O). 1H NMR (400 MHz, CF3CO2D): 7.59-7.68 (m, 5H), 7.71-7.78 (m, 3H), 7.96-8.01 (m, 3H), 8.32 (d, 1H, J=8.4 Hz), 9.57 (d, 1H, J=8.4 Hz). 13C NMR (100 MHz, CF3CO2D): 112.7, 113.7, 115.1, 115.6, 116.1, 121.0, 121.3, 126.6, 127.0, 127.3, 127.8, 129.1, 129.3, 131.0, 133.9, 134.8, 135.4, 137.1, 145.4, 153.5, 158.5, 159.6. Anal. Calcd. for C24H14N2O2: C 79.55, H 3.89, N 7.73. Found: C 79.67, H 3.95, N 7.89; 5j: Mp >300℃. IR (KBr, cm-1): 3427 (NH), 1679 (C5O). 1H NMR (400 MHz, CF3CO2D): 2.49 (s, 3H), 7.42-7.48 (m, 4H), 7.60 (d, 1H, J=8.0 Hz), 7.77-7.79 (m, 2H), 7.96-8.07 (m, 3H), 8.33 (d, 1H, J=8.0 Hz), 9.57 (d, 1H, J=8.4 Hz). 13C NMR (100 MHz, CF3CO2D): 18.2, 112.7, 113.7, 114.9, 115.6, 121.0, 121.3, 126.6, 127.2, 127.9, 128.5, 129.1, 129.2, 133.9, 134.8, 134.9, 135.3, 137.1, 142.4, 145.2, 153.8, 158.4, 159.7. Anal. Calcd. for C25H16N2O2: C 79.77, H 4.28, N 7.44. Found: C 79.85, H 4.41, N 7.53; 5k: Mp >300℃. IR (KBr, cm-1): 3415 (NH), 1676 (C5O). 1H NMR (400 MHz, CF3CO2D): 4.01 (s, 3H), 7.22 (d, 2H, J=8.0 Hz), 7.58-7.62 (m, 3H), 7.70-7.72 (m, 2H), 7.74-7.78 (m, 3H), 8.33 (d, 1H, J=7.6 Hz), 9.56 (d, 1H, J=8.4 Hz). 13C NMR (100 MHz, CF3CO2D): 55.1, 113.9, 114.3, 114.8, 122.2, 122.5, 125.5, 126.2, 126.4, 126.5, 126.7, 130.3, 130.4, 130.6, 135.1, 136.0, 136.1, 136.6, 138.3, 146.4, 154.2, 159.6, 160.9. Anal. Calcd. for C25H16N2O3: C 76.52, H 4.11, N 7.14. Found: C 76.63, H 4.27, N 7.28; 5l: Mp >300℃. IR (KBr, cm-1): 3424 (NH), 1683 (C5O). 1H NMR(400 MHz, CF3CO2D): d 7.53-7.73 (m, 5H), 7.50-7.76 (m, 2H), 7.96-8.07 (m, 3H), 8.33 (d, 1H, J=8.0 Hz), 9.56 (d, 1H, J=8.0 Hz). 13C NMR (100 MHz, CF3CO2D): d 113.5, 114.6, 116.1, 116.6, 122.0, 122.3, 128.6, 128.9, 129.1, 129.4, 130.1, 130.2, 135.0, 135.8, 136.0, 136.4, 138.1, 138.7, 146.4, 153.2, 159.5, 160.4. Anal. Calcd. for C24H13ClN2O2: C 72.64, H 3.30, N 7.06. Found: C 72.76, H 3.46, N 7.15.
-
[18]
[18] (a) A.M. Shestopalov, A.E. Fedorov, P.A. Belyakov, Study of the orientation of the Thorpe-Ziegler reaction, Chem. Heterocycl. Compd. 36 (2000) 609-610; (b) V. Gefenas,Ž . Stankevičū te, A. Malinauskas, Novel method for the synthesis of furo[2,3-d]pyrimidines by cyclization of 4-(phenacyloxy)pyrimidine-5-carbonitriles, Chem. Heterocycl. Compd. 46 (2010) 372-374; (c) H.F. Zhang, Z.Q. Ye, G. Zhao, Enantioselective synthesis of functionalized fluorinated dihydropyrano[2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane-thiourea, Chin. Chem. Lett. 25 (2014) 535-540.
-
[19]
[19] P.K. Agarwal, M. Saifuddin, B. Kundu, Regioselective intramolecular electrophilic substitution reactions involving p-deficient pyridine substrates: a new entry to pyridoquinazolines and benzo[h][1,6]naphthyridines, Tetrahedron 66 (2010) 862-870.
-
[1]
-
-
[1]
Bairu Meng , Zongji Zhuo , Han Yu , Sining Tao , Zixuan Chen , Erik De Clercq , Christophe Pannecouque , Dongwei Kang , Peng Zhan , Xinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827
-
[2]
Gangsheng Li , Xiang Yuan , Fu Liu , Zhihua Liu , Xujie Wang , Yuanyuan Liu , Yanmin Chen , Tingting Wang , Yanan Yang , Peicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880
-
[3]
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
-
[4]
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
-
[5]
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
-
[6]
Hai-Yang Song , Jun Jiang , Yu-Hang Song , Min-Hang Zhou , Chao Wu , Xiang Chen , Wei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246
-
[7]
Xiao Xiao , Biao Chen , Jia-Wei Li , Jun-Bo Zheng , Xu Wang , Hang Zhao , Fen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280
-
[8]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[9]
You Zhou , Li-Sheng Wang , Shuang-Gui Lei , Bo-Cheng Tang , Zhi-Cheng Yu , Xing Li , Yan-Dong Wu , Kai-Lu Zheng , An-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799
-
[10]
Ke Zhang , Sheng Zuo , Pengyuan You , Tong Ru , Fen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157
-
[11]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[12]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[13]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[14]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[15]
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
-
[16]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[17]
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
-
[18]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[19]
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
-
[20]
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(579)
- HTML views(2)