Citation: Nader Ghaffari Khaligh. 4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for synthesis of pyrano[4,3-b]pyran derivatives under solvent-free conditions[J]. Chinese Chemical Letters, ;2015, 26(1): 26-30. doi: 10.1016/j.cclet.2014.10.009
-
4-(Succinimido)-1-butane sulfonic acid as an efficient and reusable Brönsted acid catalyzed the synthesis of pyrano[4,3-b]pyran derivatives under solvent-free conditions. The catalyst can be prepared by mixing succinimide and 1,4-butanesultone that is more simple and safer than the preparation of succinimide sulfonic acid. This method has the advantages of high yield, clean reaction, simple methodology and short reaction time. The catalyst could be recycled without significant loss of activity.
-
-
[1]
[1] E. De Clercq, Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection, II Farmaco 54 (1999) 26-45.
-
[2]
[2] R.L.T. Parreira, O. Abrahão, S.E. Galembeck, Conformational preferences of nonnucleoside HIV-1 reverse transcriptase inhibitors, Tetrahedron 57 (2001) 3243- 3253.
-
[3]
[3] E.L. Presti, R. Boggia, A. Feltrin, et al., 3-Acetyl-5-acylpyridin-2(1H)-ones and 3- acetyl-7,8-dihydro-2,5(1H,6H) quinolinediones: synthesis, cardiotonic activity and computational studies, II Farmaco 54 (1999) 465-474.
-
[4]
[4] W.K. Anderson, D.C. Dean, T. Endo, Synthesis, chemistry, and antineoplastic activity of a-halopyridinium salts: potential pyridone prodrugs of acylated vinylogous carbinolamine tumor inhibitors, J. Med. Chem. 33 (1990) 1667-1675.
-
[5]
[5] D. Rajguru, B.S. Keshwal, S. Jain, Solvent-free, green and efficient synthesis of pyrano[4,3-b]pyrans by grinding and their biological evaluation as antitumor and antioxidant agents, Med. Chem. Res. 22 (2013) 5934-5939.
-
[6]
[6] P.S. Dragovich, T.J. Prins, R. Zhou, et al., Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 6. Structure-activity studies of orally bioavailable, 2-pyridone-containing peptidomimetics, J. Med. Chem. 45 (2002) 1607-1623.
-
[7]
[7] W. Kemnitzer, J. Drewe, S.C. Jiang, et al., Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8- positions, J. Med. Chem. 50 (2007) 2858-2864.
-
[8]
[8] X. Fan, D. Feng, Y. Qu, et al., Practical and efficient synthesis of pyrano[3,2-c]pyridone, pyrano[4,3-b]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents, Bioorg. Med. Chem. Lett. 20 (2010) 809- 813.
-
[9]
[9] K. Tatsuta, T. Yamaguchi, Y. Tsuda, et al., The first total synthesis and structural determination of YCM1008A, Tetrahedron Lett. 48 (2007) 4187- 4190.
-
[10]
[10] K. Tanabe, W.F. Hölderich, Industrial application of solid acid-base catalysts, Appl. Catal. A 181 (1999) 399-434.
-
[11]
[11] D.J. Cole-Hamilton, Homogeneous catalysis - new approaches to catalyst separation, recovery, and recycling, Science 299 (2003) 1702-1706.
-
[12]
[12] A. Chakrabarti, M.M. Sharma, Cationic ion exchange resins as catalyst, React. Polym. 20 (1993) 1-45.
-
[13]
[13] J.M. Riego, Z. Sedin, J.M. Zaldivar, N.C. Marziano, C. Tortato, Sulfuric acid on silicagel: an inexpensive catalyst for aromatic nitration, Tetrahedron Lett. 37 (1996) 513-516.
-
[14]
[14] N.J. Turro, Photochemistry of ketones adsorbed on porous silica, Tetrahedron 43 (1987) 1589-1616.
-
[15]
[15] N.G. Khaligh, P.G. Ghasem-Abadi, N-Sulfonic acid poly(4-vinylpyridinum) hydrogen sulfate as a novel, efficient, and reusable solid acid catalyst for acylation under solventpfree conditions, Chin. J. Catal. 35 (2014) 1126-1135.
-
[16]
[16] B.X. Du, M.Y. Yin, M.M. Zhang, Y.L. Li, X.S. Wang, Yb(OTf)3: an efficient catalyst for the synthesis of 11-aryl-7H-cyclopenta[b][4,7]phenanthrolin-10(11H)-one derivatives, J. Heterocycl. Chem. 49 (2012) 1439-1442.
-
[17]
[17] A.D. Patil, A.J. Freyer, S.E. Drake, et al., The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn., J. Med. Chem. 36 (1993) 4131-4138.
-
[18]
[18] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, 1998.
-
[19]
[19] D. Warren, Green Chemistry. A Teaching Resource, Royal Society of Chemistry, Cambridge, 2001.
-
[20]
[20] J. Clark, D. Macquarrie, Handbook of Green Chemistry and Technology, Blackwell Publishing, Abingdon, Oxfordshire, 2002.
-
[21]
[21] M. Poliakoff, P. Licence, Sustainable technology: green chemistry, Nature 450 (2007) 810-812.
-
[22]
[22] P. Tundo, P.T. Anastas (Eds.), Green Chemistry: Challenging Perspectives, Oxford University Press, Oxford, UK, 2000.
-
[23]
[23] R.A. Sheldon, I. Arends, Green Chemistry and Catalysis, Wiley-VCH, Indianapolis, USA, 2006.
-
[24]
[24] (a) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid: a mild, efficient, and reusable catalyst for the chemoselective trimethylsilylation of alcohols and phenols, Phosphorus Sulfur Silicon Relat. Elem. 186 (2011) 2156-2165;
-
[25]
(b) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid: an efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions, Dyes Pigm. 95 (2012) 789-794;
-
[26]
(c) F. Shirini, N.G. Khaligh, A succinimide-N-sulfonic acid catalyst for the acetylation reactions in absence of a solvent, Chin. J. Catal. 34 (2013) 695-703;
-
[27]
(d) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid catalyzed synthesis of bis(indolyl)methane and coumarin derivatives under mild conditions, Chin. J. Catal. 34 (2013) 1890-1896.
-
[28]
[25] T.S. Jin, G. Sun, Y.W. Li, T.S. Li, An efficient and convenient procedure for the preparation of 1,1-diacetates from aldehydes catalyzed by H2NSO3H, Green Chem. 4 (2002) 255-256.
-
[29]
[26] M.Z. Piao, K. Imafuku, Convenient synthesis of amino-substituted pyranopyranones, Tetrahedron Lett. 38 (1997) 5301-5302.
-
[30]
[27] I.V. Magedov, M. Manpadi, M.A. Ogasawara, et al., Structural simplification of bioactive natural products with multicomponent synthesis. 2. Antiproliferative and antitubulin activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones, J. Med. Chem. 51 (2008) 2561-2570.
-
[31]
[28] E.V. Stoyanov, I.C. Ivanov, D. Heber, General method for the preparation of substituted 2-amino-4H,5H-pyrano[4,3-b]pyran-5-ones and 2-amino-4H-pyrano[ 3,2-c]pyridine-5-ones, Molecules 5 (2000) 19-23.
-
[32]
[29] D.Q. Shi, L.H. Niu, Q.Y. Zhuhang, Synthesis of pyrano[3,2-c]pyran-5-one derivatives by three-component one-pot reaction in aqueous media, Chin. J. Org. Chem. 28 (2008) 1633-1636.
-
[33]
[30] A. Shaabani, S. Samadi, Z. Badri, A. Rahmati, Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems, Catal. Lett. 104 (2005) 39-43.
-
[34]
[31] A. Shaabani, S. Samadi, A. Rahmati, One-pot, three-component condensation reaction in water: an efficient and improved procedure for the synthesis of pyran annulated heterocyclic systems, Synth. Commun. 37 (2007) 491-499.
-
[35]
[32] X.S. Wang, J.X. Zhou, Z.S. Zeng, et al., One-pot synthesis of pyrano[3,2-c]pyran derivatives catalyzed by KF/Al2O3, Arkivoc 11 (2006) 107-113.
-
[36]
[33] M. Seifi,H. Sheibani, High surface areaMgOas a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media, Catal. Lett. 126 (2008) 275-279.
-
[37]
[34] D. Rajguru, B.S. Keshwal, S. Jain, H6P2W18O62 18H2O: a green and reusable catalyst for one-pot synthesis of pyrano[4,3-b]pyrans in water, Chin. Chem. Lett. 24 (2013) 1033-1036.
-
[38]
[35] N.G. Khaligh, 1,10-Butylenebis(3-methyl-3H-imidazol-1-ium) hydrogensulfate as a halogen-free and reusable binuclear Brönsted ionic liquid catalyzed the synthesis of pyrano[4,3-b]pyran derivatives, Monatsh. Chem. 145 (2014) 1643-1648.
-
[39]
[36] M. Ghashang, S.S. Mansoor, K. Aswin, Thiourea dioxide: an efficient and reusable organocatalyst for the rapid one-pot synthesis of pyrano[4,3-b]pyran derivatives in water, Chin. J. Catal. 35 (2014) 127-133.
-
[1]
-
-
[1]
Bowen Wang , Longwu Sun , Qianqian Cao , Xinzhi Li , Jianai Chen , Shizhao Wang , Miaolin Ke , Fener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617
-
[2]
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
-
[3]
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
-
[4]
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
-
[5]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[6]
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
-
[7]
Gangsheng Li , Xiang Yuan , Fu Liu , Zhihua Liu , Xujie Wang , Yuanyuan Liu , Yanmin Chen , Tingting Wang , Yanan Yang , Peicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880
-
[8]
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
-
[9]
Yuexiang Liu , Xiangqiao Yang , Tong Lin , Guantian Yang , Xiaoyong Xu , Bubing Zeng , Zhong Li , Weiping Zhu , Xuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747
-
[10]
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
-
[11]
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
-
[12]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[13]
Xiao Xiao , Biao Chen , Jia-Wei Li , Jun-Bo Zheng , Xu Wang , Hang Zhao , Fen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280
-
[14]
Linjie Ju , Zhongxi Huang , Qian Shen , Chan Fu , Shuanghe Li , Wenjie Duan , Chenfeng Xu , Weizhen An , Zhiqiang Zhai , Jifu Wei , Changmin Yu , Guoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450
-
[15]
Lei Shen , Hongmei Liu , Ming Jin , Jinchao Zhang , Caixia Yin , Shuxiang Wang , Yutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572
-
[16]
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
-
[17]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[18]
Jing LIANG , Qian WANG , Junfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177
-
[19]
Luyan Shi , Ke Zhu , Yuting Yang , Qinrui Liang , Qimin Peng , Shuqing Zhou , Tayirjan Taylor Isimjan , Xiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222
-
[20]
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(709)
- HTML views(4)