Citation: Fang-Fang Wang, Cheng Chen, Yi Zhang, Da-Wei Fu. Crystal structure and dielectric property of supramolecular macrocyclic [(NDPA)·(18-crown-6)]2+·(DMA)+·3ClO4- assemblies[J]. Chinese Chemical Letters, ;2015, 26(1): 31-35. doi: 10.1016/j.cclet.2014.10.005
-
One novel organic-inorganic hybrid supramolecular assemblies [(NDPA)·(18-crown-6)]2+·(DMA)+·3ClO4- (1), has been successfully constructed through the prominent strategies of crystal engineering (NDPA = N,N-dimethyl-1,4-phenylenediamine, DMA = dimethylamine), and characterized by IR, powder XRD and single crystal X-ray diffraction. In the structure, the supramolecular organic cations and inorganic ClO4- anions are arranged alternately and linked by N-O···H hydrogen bonds. It is worthy to note that the ClO4- are linked to form one-dimensional inorganic chain through strong N- H···O hydrogen bonds along b-axis. There is no distinct dielectric anomaly in the temperaturedependent and frequency-dependent dielectric constant curves, suggesting that no phase transition exists within the measured temperature range (120-420 K). The relative displacement of cations and anions, the turned polarization of molecular electric moment and macrocyclic molecule rotator are the main factors to determine the trend of dielectric constant.
-
-
[1]
[1] D.W. Fu, H.L. Cai, W. Zhang, et al., Diisopropylammonium bromide is a hightemperature molecular ferroelectric crystal, Science 339 (2013) 425-428.
-
[2]
[2] D.W. Fu, H.L. Cai, S.H. Li, et al., 4-Methoxyanilinium perrhenate 18-crown-6: a new ferroelectric with order originating in swinglike motion slowing down, Phys. Rev. Lett. 110 (2013) 257601.
-
[3]
[3] W. Zhang, R.G. Xiong, Ferroelectric metal-organic frameworks, Chem. Rev. 112 (2012) 1163-1195.
-
[4]
[4] Z.H. Sun, X.Q. Wang, J.H. Luo, et al., Ferroelastic phase transition and switchable dielectric behavior associated with ordering of molecular motion in a perovskitelike architectured supramolecular cocrystal, J. Mater. Chem. C 1 (2013) 2561-2567.
-
[5]
[5] H.N. Lee, H.M. Christen, M.F. Christen, C.M. Rouleau, D.H. Lowndes, Strong polarization enhancement in asymmetric three-component ferroelectric superlattices, Nature 433 (2005) 395-399.
-
[6]
[6] H.Y. Ye, D.W. Fu, Y. Zhang, et al., Hydrogen-bonded ferroelectrics based on metal-organic coordination, J. Am. Chem. Soc. 131 (2009) 42-43.
-
[7]
[7] D.W. Fu, Y.M. Song, G.X. Wang, et al., Dielectric anisotropy of a homochiral trinuclear nickel(Ⅱ) complex, J. Am. Chem. Soc. 129 (2007) 5346-5347.
-
[8]
[8] D.W. Fu, W. Zhang, Y. Zhang, et al., Supramolecular bola-like ferroelectric: 4- methoxyanilinium tetrafluoroborate-18-crown-6, J. Am. Chem. Soc. 133 (2011) 12780-12786.
-
[9]
[9] D.W. Fu, W. Zhang, H.L. Cai, et al., Diisopropylammonium chloride: a ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization, Adv. Mater. 23 (2011) 5658-5662.
-
[10]
[10] H. Hughes, M.M.B. Allix, C.A. Bridges, et al., A polar oxide with a large magnetization synthesized at ambient pressure, J. Am. Chem. Soc. 127 (2005) 13790-13791.
-
[11]
[11] T. Akutagawa, H. Koshinaka, D. Stao, et al., Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators, Nat. Mater. 8 (2009) 342-347.
-
[12]
[12] Y.E. Alexeev, B.I. Kharisov, T.C. Hermández García, A.D. Garnovskii, Coordination motifs in modern supramolecular chemistry, Coord. Chem. Rev. 254 (2010) 794- 831.
-
[13]
[13] G.W. Gokel, W.M. Leevy, M.E. Weber, Crown ether: sensors for ions and molecular scaffolds for materials and biological models, Chem. Rev. 104 (2004) 2723-2750.
-
[14]
[14] D.W. Fu, W. Zhang, R.G. Xiong, et al., A multiferroic perdeutero metal-organic framework, Angew. Chem. Int. Ed. 50 (2011) 11947-11951.
-
[15]
[15] D.W. Fu, Y. Zhang, H.L. Cai, et al., The first example of a molecular-based ferroelectric with barium cation: catena-(mu(2)-nitrite-O,O)-bi-aqua-(18- crown-6)-barium nitrite, J. Mater. Chem. 22 (2012) 17525-17530.
-
[16]
[16] D. Braga, M. Gandolfi, M. Lusi, et al., Solution and solid-state preparation of 18- crown [6] complexes with M[HSO4] (n) salts (M = NH4+, K+, Sr2+ and n = 1,2) and an investigation of solvation/desolvation processes and crystal polymorphism, Chem. Eur. J. 13 (2007) 5249-5255.
-
[17]
[17] P.C. Junk, B.J. McCool, B. Moubaraki, et al., Utilization of crown ethers to stabilize the dinuclear μ-oxo bridged iron (Ⅲ) aqua ion, [(H2O)5Fe(mu-O) Fe(OH2)5]4+, J. Chem. Dalton Trans. 6 (2002) 1024-1029.
-
[18]
[18] J.M. Harrington, S.B. Jones, P.H. White, R.D. Hancock, Possible role of relativistic effects in the plasticity of the coordination geometry of Cadmium (Ⅱ). A voltammetric study of the stability of the complexes of cadmium (Ⅱ) with 12-crown-4, 15-crown-5 and 18-crown-6 in aqueous solution and the structures of [Cd(benzo- 18-crown-6)(NCS)2] and [K(18-crown-6)][Cd(SCN)3], Inorg. Chem. 43 (2004) 4456-4463.
-
[19]
[19] J.M. Dou, X. Gao, F.Y. Dong, D.C. Li, D.Q. Wang, One-or two dimensional 2,3- naphtho crown ether complexes [Na(N15C15)]2[M(SCN)4] and [K(N18C6)]2[M(SCN)4] (M = Pd, Pt) constructed by pi-pi stacking interactions, Dalton Trans. 18 (2004) 2918-2922.
-
[20]
[20] D. Braga, M. Gandolfi, M. Lusi, et al., Solution and solid-state preparation of 18- crown-6 and 15-crown-5 adducts of hydrogen sulfate salts and an investigation of the reversible dehydration processes, Cryst. Growth Des. 7 (2007) 919-924.
-
[21]
[21] D. Braga, M. Curzi, M. Lusi, F. Grepioni, Unprecedented mechanochemical preparation of 18Crown[6] and 15Crown[5] adducts of ammonium hydrogen sulfate by grinding or kneading, CrystEngComm 7 (2005) 276-278.
-
[22]
[22] R.M. Izatt, J.C. Bradshaw, S.A. Nielsen, et al., Thermodynamic and kinetic data for cation macrocycle interaction, Chem. Rev. 85 (1985) 271-339.
-
[23]
[23] W.S. You, E.B. Wang, L. Xu, et al., Synthesis and structural characterization of a new supramolecular compound: H3PW12O40·6C14H20O5·16H2O (C14H20O5 = benzo-15-crown-5), J. Mol. Struct. 554 (2000) 141-147.
-
[24]
[24] H.W. Gibson, N. Yamaguchi, L. Hamilton, J.W. Jones, Cooperative self-assembly of dendrimers via pseudorotaxane formation from a homotritopic guest molecular and complementary monotopic host dendrons, J. Am. Chem. Soc. 124 (2002) 4653-4665.
-
[25]
[25] D. Braga, E. Modena, M. Polito, K. Rubini, F. Grepioni, Crystal forms of highly "dynamic" 18-crown[6] complexes with M[HSO4] and M[H2PO4] (M+= NH4+, Rb+, Cs+): thermal behaviour and solid-state preparation, New J. Chem. 32 (2008) 1718-1724.
-
[26]
[26] S.G. Li, J.H. Luo, Z.H. Sun, et al., Phase transition triggered by ordering of unique pendulum-like motions in a supramolecular complex: potassium hydrogen bis(- dichloroacetate)-18-crown-6, Cryst. Growth Des. 13 (2013) 2675-2679.
-
[27]
[27] P. Czarnecki, A. Katrusiak, I. Szafraniak, J. Wasicki, Experimental evidence for a continuous phase transition in a multidimensional ferroelectric, Phys. Rev. B 57 (1998) 3326-3332.
-
[28]
[28] N. Onoda Yamamuro, O. Yamamuro, T. Matsuo, H. Suga, Heat capacities and phase transition of protonated and deuterated methylammonium tetrafluoroborates, J. Phys. Chem. 100 (1996) 19647-19652.
-
[29]
[29] E. Palacios, J.J. Melero, R. Burriel, P. Ferloni, Structual, calorimetric, and Monte Carlo investigation of the order-disorder transition of BF4 in (CH3)4NBF4, Phys. Rev. B 54 (1996) 9099-9108.
-
[30]
[30] T. Akutagawa, D. Endo, F. Kudo, et al., A solid-state supramolecular rotator assenbled from a Cs-crown ether polyoxometalate hybrid: (Cs+)3([18]crown- 6)3(H+)2[PMo12O40], Cryst. Growth Des. 8 (2008) 812-816.
-
[31]
[31] D.H. Wu, J.Z. Ge, H.L. Cai, W. Zhang, R.G. Xiong, Organic salt of hydrogen L-tartaric acid: a novel wide-temperature-range ferroelectrics with a reversible phase transition, CrystEngComm 13 (2011) 319-324.
-
[32]
[32] SAINT-Plus, version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.
-
[33]
[33] G.M. Sheldrick, SADABSs: An Empirical Absorption Correction Program, Bruker Analytical X-ray Systems, Madison, WI, 1996.
-
[34]
[34] G.M. Sheldrick, SHELXTL-97, Universität of Göttingen, Göttingen, Germany, 1997.
-
[35]
[35] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., Wiley, New York, 1978.
-
[1]
-
-
[1]
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
-
[2]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[3]
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
-
[4]
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
-
[5]
Tiantian Li , Ruochen Jin , Bin Wu , Dongming Lan , Yunjian Ma , Yonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701
-
[6]
Ying-Yu Zhang , Jia-Qi Luo , Yan Han , Wan-Ying Zhang , Yi Zhang , Hai-Feng Lu , Da-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530
-
[7]
Yan Cheng , Hai-Quan Yao , Ya-Di Zhang , Chao Shi , Heng-Yun Ye , Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358
-
[8]
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
-
[9]
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
-
[10]
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
-
[11]
Le Ye , Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257
-
[12]
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
-
[13]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[14]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[15]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[16]
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
-
[17]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[18]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[19]
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
-
[20]
Jiakun Bai , Junhui Jia , Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(641)
- HTML views(0)