Citation: Xiao-Hang Yang, Shu Li, Zhi-Shu Tang, Xi-Di Yu, Tin Huang, Yong Gao. A simple, water-soluble, Fe3+-selective fluorescent probe and its application in bioimaging[J]. Chinese Chemical Letters, ;2015, 26(1): 129-132. doi: 10.1016/j.cclet.2014.09.025 shu

A simple, water-soluble, Fe3+-selective fluorescent probe and its application in bioimaging

  • Corresponding author: Yong Gao, 
  • Received Date: 17 July 2014
    Available Online: 18 September 2014

    Fund Project: This work was supported by Natural Science Foundationof Fujian Province (No. 2013H0019) (No. 2013H0019) the Science Foundation of Education Department of Fujian Province (No. JA11064) (No. JA11064) the Open Foundation of the State Key Laboratory of Fine Chemicals (No. KF1307) (No. KF1307)

  • A simple, water-soluble, Fe3+-selective fluorescent probe, derived from rhodamine B, was synthesized and characterized. The probe exhibits a fluorescence response toward Fe3+ with acceptable sensitivity and selectivity and even facilitates visual or naked-eye detection of Fe3+. The experiment results show that the response of the probe to Fe3+ is pH-independent over a wide range of 4.0-10.0. In addition, fluorescence microscopic imaging experiments have proven that the probe is cell permeable and can be used for monitoring intracellular Fe3+ in living cells.
  • 加载中
    1. [1]

      [1] (a) B. William, S. Maya, Intracellular labile iron, Int. J. Biochem. Cell Biol. 40 (2008) 350-354;

    2. [2]

      (b) C.D. Kaplan, J. Kaplan, Iron acquisition and transcriptional regulation, Chem. Rev. 109 (2009) 4536-4552.

    3. [3]

      [2] (a) B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, 1999, pp. 55-56;

    4. [4]

      (b) P. Frank, P. Sandra, E. Dogruöz, et al., Reduction of Fe(Ⅲ) ions complexed to physiological ligands by lipoyl dehydrogenase and other flavoenzymes in vitro, J. Biol. Chem. 278 (2003) 46403-46413;

    5. [5]

      (c) C.H. Robert, X.L. Kong, Iron speciation in the cytosol: an overview, Dalton Trans. 42 (2013) 3220-3229;

    6. [6]

      (d) P. Wang, T.A. Okamura, H.P. Zhou, W.Y. Sun, Y.P. Tian, Metal complex with terpyrindine derivative ligand as highly selective colorimetric sensor for iron(Ⅲ), Chin. Chem. Lett. 24 (2013) 20-22.

    7. [7]

      [3] (a) K.M. Dean, Y. Qin, A.E. Palmer, Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes, Biochim. Biophys. Acta 1823 (2012) 1406-1415;

    8. [8]

      (b) C. Giselle, M.M. Tania, R.B. Fernanda, Analytical methods for copper, zinc and iron quantification in mammalian cells, Metallomics 5 (2013) 1336-1345.

    9. [9]

      [4] (a) H.N. Kim, M.H. Lee, H.J. Kim, J.S. Kim, J. Yoon, A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions, Chem. Soc. Rev. 37 (2008) 1465-1472;

    10. [10]

      (b) X.Q. Chen, T.H. Pradhan, F. Wang, J.S. Kim, J. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev. 112 (2012) 1910-1956.

    11. [11]

      [5] (a) X. Zhang, Y. Shiraishi, T. Hirai, A new rhodamine derivative bearing an azacrown ether as a selective fluorescent chemosensor for Fe3+ and Hg2+, Tetrahedron Lett. 49 (2008) 4178-4181;

    12. [12]

      (b) L.Z. Zhang, J.L. Fan, X.J. Peng, X-ray crystallographic and photophysical properties of rhodamine-based chemosensor for Fe3+, Spectrochim. Acta Part A 73 (2009) 398-402;

    13. [13]

      (c) T.L. Gao, K.M. Lee, J.Y. Heo, S.I. Yang, A new ferric ion-selective fluorescent chemosensor with a wide dynamic range, Bull. Korean Chem. Soc. 31 (2010) 2100-2102;

    14. [14]

      (d) J.B. Li, Q.H. Hu, X.L. Yu, et al., A novel rhodamine-benzimidazole conjugate as a highly selective turn-on fluorescent probe for Fe3+, J. Fluoresc. 21 (2011) 2005- 2013;

    15. [15]

      (e) W.T. Yin, H. Cui, Z. Yang, et al., Facile synthesis and characterization of rhodamine-based colorimetric and "off-on" fluorescent chemosensor for Fe3+, Sens. Actuators B 157 (2011) 675-680;

    16. [16]

      (f) M.Y. She, Z. Yang, B. Yin, et al., A novel rhodamine-based fluorescent and colorimetric"off-on" chemosensor and investigation of the recognizing behavior towards Fe3+, Dyes Pigments 92 (2012) 1337-1343;

    17. [17]

      (g) Z. Aydin, Y.B. Wei, M.L. Guo, A highly selective rhodamine based turn-on optical sensor for Fe3+, Inorg. Chem. Commun. 20 (2012) 93-96.

    18. [18]

      [6] (a) J.J. Du, M.M. Hu, J.L. Fan, X.J. Peng, Fluorescent chemodosimeters using "mild" chemical events for the detection of small anions and cations in biological and environmental media, Chem. Soc. Rev. 41 (2012) 4511-4535;

    19. [19]

      (b) M.H. Lynne, J.F. Katherine, Probing oxidative stress: small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols, Coord. Chem. Rev. 256 (2012) 2333-2356;

    20. [20]

      (c) X.H. Li, X.H. Gao, W. Shi, H.M. Ma, Design strategies for water-soluble small molecular chromogenic and fluorogenic probes, Chem. Rev. 114 (2014) 590-659.

    21. [21]

      [7] (a) S.R. Liu, S.P. Wu, New water-soluble highly selective fluorescent chemosensor for Fe(Ⅲ) ions and its application to living cell imaging, Sens. Actuators B 171-172 (2012) 1110-1116;

    22. [22]

      (b) H.J. Sheng, X.M. Meng, W.P. Ye, et al., A water-soluble fluorescent probe for Fe(Ⅲ): improved selectivity over Cr(Ⅲ), Sens. Actuators B 195 (2014) 534-539;

    23. [23]

      (c) C.Y. Li, C.X. Zou, Y.F. Li, J.L. Tang, C. Weng, A new rhodamine-based fluorescent chemosensor for Fe3+ and its application in living cell imaging, Dyes Pigments 104 (2014) 110-115;

    24. [24]

      (d) Z. Yang, M.Y. She, B. Yin, et al., Three rhodamine-based "off-on" chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells, J. Org. Chem. 77 (2012) 1143-1147;

    25. [25]

      (f) M.P. Yang, C.C. Xu, S.N. Li, et al., Three selective and sensitive "off-on" probes based on rhodamine for Fe3+ imaging in living cells, RSC Adv. 4 (2014) 14248- 14253.

    26. [26]

      [8] K.N. Raymond, Biomimetic metal encapsulation, Coord. Chem. Rev. 105 (1990) 135-155.

    27. [27]

      [9] S.K. Sahoo, D. Sharma, R.K. Bera, G. Crisponi, J.F. Callan, Iron(Ⅲ) selective molecular and supramolecular fluorescent probes, Chem. Soc. Rev. 41 (2012) 7195-7227.

    28. [28]

      [10] (a) S. Bae, J. Tae, Rhodamine-hydroxamate-based fluorescent chemosensor for Fe, Tetrahedron Lett. 48 (2007) 5389-5392;

    29. [29]

      (b) K.S. Moon, Y.K. Yang, S. Ji, J. Tae, Aminoxy-linked rhodamine hydroxamate as fluorescent chemosensor for Fe3+ in aqueous media, Tetrahedron Lett. 51 (2010) 3290-3293.

    30. [30]

      [11] (a) Y. Shiraishi, R. Miyamoto, X. Zhang, T. Hirai, Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range, Org. Lett. 9 (2007) 3921-3924;

    31. [31]

      (b) M.H. Lee, H.J. Kim, S. Yoon, N. Park, J.S. Kim, Metal ion induced FRET off-on in tren/dansyl-appended rhodamine, Org. Lett. 10 (2008) 213-216.

    32. [32]

      [12] J.D. Chartres, M. Busby, M.J. Riley, J.J. Davis, P.V. Bernhardt, A turn-on fluorescent iron complex and its cellular uptake, Inorg. Chem. 50 (2011) 9178-9183.

    33. [33]

      [13] A.K. Singh, V.K. Gupta, B. Gupta, Chromium(Ⅲ) selective membrane sensors based on Schiff bases as chelating ionophores, Anal. Chim. Acta 585 (2007) 171-178.

    34. [34]

      [14] R. Patil, A. Moirangthem, R. Butcher, et al., Al3+ selective colorimetric and fluorescent red shifting chemosensor: application in living cell imaging, Dalton Trans. 43 (2014) 2895-2899.

  • 加载中
    1. [1]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    2. [2]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    3. [3]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    4. [4]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    5. [5]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    6. [6]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    7. [7]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    8. [8]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    9. [9]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    10. [10]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    11. [11]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    12. [12]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    13. [13]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    14. [14]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    15. [15]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    16. [16]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    17. [17]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    18. [18]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    19. [19]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    20. [20]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

Metrics
  • PDF Downloads(0)
  • Abstract views(675)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return