Citation: Yong Na, Bo Hu, Qiu-Ling Yang, Jian Liu, Li Zhou, Rui-Qing Fan, Yu-Lin Yang. CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting[J]. Chinese Chemical Letters, ;2015, 26(1): 141-144. doi: 10.1016/j.cclet.2014.09.011 shu

CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting

  • Corresponding author: Yong Na,  Yu-Lin Yang, 
  • Received Date: 1 June 2014
    Available Online: 29 August 2014

    Fund Project: This work is supported by the Fundamental Research Funds for the Central Universities (No. HIT. IBRSEM. A. 201409) (No. HIT. IBRSEM. A. 201409) the Program for Innovation Research of Science in Harbin Institute of Technology (PIRS of HIT No. A201418, A201416) (PIRS of HIT No. A201418, A201416)

  • CdS sensitized NiO electrode was used as the photoactive cathode in a photoelectrochemical cell for water splitting, avoiding the use of a sacrificial electron donor. Photocurrent increment under visible light irradiation was observed after integration of [Co(dmgH)2(4-Me-py)Cl] (1) to the photocathode, suggesting 1 could accept electrons from photoexcited CdS for water reduction and NiO could move the holes in the valence band of CdS to anode for water oxidation.
  • 加载中
    1. [1]

      [1] N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 15729-15735.

    2. [2]

      [2] J. Barber, Photosynthetic energy conversion: natural and artificial, Chem. Soc. Rev. 38 (2009) 185-196.

    3. [3]

      [3] T.R. Cook, D.K. Dogutan, S.Y. Reece, et al., Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev. 110 (2010) 6474-6502.

    4. [4]

      [4] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 (2004) 4245-4270.

    5. [5]

      [5] H.S. Zhai, L. Cao, X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett. 24 (2013) 103-106.

    6. [6]

      [6] M.G. Walter, E.L. Warren, J.R. McKone, et al., Solar water splitting cells, Chem. Rev. 110 (2010) 6446-6473.

    7. [7]

      [7] M. Wang, L. Sun, Hydrogen production by noble-metal-free molecular catalysts and related nanomaterials, ChemSusChem 3 (2010) 551-554.

    8. [8]

      [8] V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Splitting water with cobalt, Angew. Chem. Int. Ed. 50 (2011) 7238-7266.

    9. [9]

      [9] F.Y. Wen, J.H. Yang, X. Zong, et al., Photocatalytic H2 production on hybrid catalyst system composed of inorganic semiconductor and cobaloximes catalysts, J. Catal. 218 (2011) 318-324.

    10. [10]

      [10] J. Huang, K.L. Mulfort, P. Du, L.X. Chen, Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production, J. Am. Chem. Soc. 134 (2012) 16472-16475.

    11. [11]

      [11] P.D. Tran, V. Artero, M. Fontecave, Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems, Energy Environ. Sci. 3 (2010) 727-747.

    12. [12]

      [12] A. Krawicz, J. Yang, E. Anzenberg, et al., Photofunctional construct that interfaces molecular cobalt-based catalysts for H2 production to a visible-light-absorbing semiconductor, J. Am. Chem. Soc. 135 (2013) 11861-11868.

    13. [13]

      [13] L. Li, L. Duan, F. Wen, et al., Visible light driven hydrogen production from a photoactive cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO, Chem. Commun. 48 (2012) 988-990.

    14. [14]

      [14] S.H. Kang, K. Zhu, N.R. Neale, A.J. Frank, Hole transport in sensitized CdS-NiO nanoparticle photocathodes, Chem. Commun. 47 (2011) 10419-10421.

    15. [15]

      [15] I. Barceló, E. Guillén, T. Lana-Villarreal, R. Gómez, Preparation and characterization of nickel oxide photocathodes sensitized with colloidal cadmium selenide quantum dots, J. Phys. Chem. C 117 (2013) 22509-22517.

    16. [16]

      [16] P. Du, J. Schneider, G. Luo, W.W. Brennessel, R. Eisenberg, Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts, Inorg. Chem. 48 (2009) 4952-4962.

    17. [17]

      [17] A. Krawicz, D. Cedeno, G.F. Moore, Energetics and efficiency analysis of cobaloxime- modified semiconductor under simulated air mass 1.5 illumination, Phys. Chem. Chem. Phys. 16 (2014) 15818-15824.

    18. [18]

      [18] S. Powar, Q. Wu, M. Weidelener, et al., Improved photocurrents for p-type dyesensitized solar cells using nano-structured nickel(Ⅱ) oxide microballs, Energy Environ. Sci. 5 (2012) 8896-8900.

    19. [19]

      [19] S. Powar, T. Daeneke, M.T. Ma, et al., Highly efficient p-type dye-sensitized solar cells based on tris(1,2-diaminoethane)cobalt(Ⅱ)/(Ⅲ) electrolytes, Angew. Chem. Int. Ed. 52 (2013) 602-605.

  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    3. [3]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    5. [5]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    6. [6]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    7. [7]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    8. [8]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    9. [9]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    10. [10]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    11. [11]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    12. [12]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    13. [13]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    14. [14]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    15. [15]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    16. [16]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    17. [17]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2024.100197

    18. [18]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    19. [19]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    20. [20]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

Metrics
  • PDF Downloads(0)
  • Abstract views(661)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return