Citation: Bo-Ting Yang, Peng Wu. Post-synthesis and catalytic performance of FER type sub-zeolite Ti-ECNU-8[J]. Chinese Chemical Letters, ;2014, 25(12): 1511-1514. doi: 10.1016/j.cclet.2014.09.003 shu

Post-synthesis and catalytic performance of FER type sub-zeolite Ti-ECNU-8

  • Corresponding author: Peng Wu, 
  • Received Date: 28 July 2014
    Available Online: 29 August 2014

    Fund Project: We gratefully acknowledge the National Natural Science Foundation of China (Nos. 21373089, U1162102) (Nos. 21373089, U1162102) PhD Programs Foundation of Ministry of Education (No. 2012007613000) (No. 2012007613000) the National Key Technology R&D Program (No. 2012BAE05B02) (No. 2012BAE05B02)

  • A titanosilicate Ti-ECNU-8 with a FER type sub-zeolite structure was developed by pots-synthesis and applied to the epoxdiation of alkenes with hydrogen peroxide. A controlled acid treatment on the pure silica layered precursor PLS-3 of FER topology gave rise to a sub-zeolite ECNU-8. Composed of a collection of FER sheets without an ordered stacking manner along layer related [1 0 0] direction, the structure of ECNU-8 was constructed by a reorientation of interlayer hydrogen bond moieties caused by partial removal of interlayer organic structure directing agent. ECNU-8 possessed an external surface area enlarged by ca. 30% in comparison to corresponding three-dimensional FER zeolite. Through a solid-gas reaction with TiCl4 vapor, tetrahedral Ti active sites were introduced into the framework. The resultant Ti-ECNU-8 retained the structural properties of ECNU-8, and exhibited an excellent catalytic performance for the epoxidation of cycloalkenes owing to the accessible Ti sites located in open reaction space.
  • 加载中
    1. [1]

      [1] S.M. Csicsery, Shape-selective catalysis in zeolites, Zeolites 4 (1984) 202-213.

    2. [2]

      [2] V. Valtchev, G. Majano, S. Mintovaa, J. Peíez-Ramírez, Tailored crystalline microporous materials by post-synthesis modification, Chem. Soc. Rev. 42 (2013) 263-290.

    3. [3]

      [3] S. Feast, J.A. Lercher, Synthesis of intermediates and fine chemicals using molecular sieve catalysts, Stud. Surf. Sci. Catal. 102 (1996) 363-412.

    4. [4]

      [4] W.J. Roth, P. Nachtigall, R.E. Morris, J. Č ejka, Two-dimensional zeolites: current status and perspectives, Chem. Rev. 114 (2014) 4807-4837.

    5. [5]

      [5] W.J. Roth, J.Čejka, Two-dimensional zeolites: dream or reality, Catal. Sci. Technol. 1 (2011) 43-53.

    6. [6]

      [6] J. Ruan, P.Wu, B. Slater, et al., Structural characterization of interlayer expanded zeolite prepared from ferrierite lamellar precursor, Chem. Mater. 21 (2009) 2904-2911.

    7. [7]

      [7] W.J. Roth, Chapter 7: synthesis of delaminated and pillared zeolitic materials, Stud. Surf. Sci. Catal. 168 (2007) 221-239.

    8. [8]

      [8] M.E. Leonowicz, J.A. Lawton, S.L. Lawton, M.K. Rubin, MCM-22: a molecular sieve with two independent multidimensional channel systems, Science 264 (1994) 1910-1913.

    9. [9]

      [9] L. Schreyeck, P. Caullet, J.C. Mougenel, J.L. Guth, B. Marler, PREFER: a new layered (alumino) silicate precursor of FER-type zeolite, Microporous. Mater. 6 (1996) 259-271.

    10. [10]

      [10] T. Ikeda, Y. Akiyama, Y. Oumi, A. Kawai, F. Mizukami, The topotactic conversion of a novel layered silicate into a new framework Zeolite, Angew. Chem. Int. Ed. 43 (2004) 4892-4896.

    11. [11]

      [11] S. Zanardi, A. Alberti, G. Cruciani, et al., Crystal structure determination of zeolite Nu-6(2) and its layered precursor Nu-6(1), Angew. Chem. Int. Ed. 43 (2004) 4933-4937.

    12. [12]

      [12] B. Marler, N. Strö ter, H. Gies, The structure of the new pure silica zeolite RUB-24, Si32O64, obtained by topotactic condensation of the intercalated layer silicate RUB-18, Microporous. Mesoporous. Mater. 83 (2005) 201-211.

    13. [13]

      [13] Y.X. Wang, H. Gies, B. Marler, U. Mü ller, Synthesis and crystal structure of zeolite RUB-41 obtained as calcination product of a layered precursor: a systematic approach to a new synthesis route, Chem. Mater. 17 (2005) 43-49.

    14. [14]

      [14] D. Mochizuki, A. Shimojima, T. Imagawa, K. Kuroda, Molecular manipulation of two-and three-dimensional silica nanostructures by alkoxysilylation of a layered silicate octosilicate and subsequent hydrolysis of alkoxy groups, J. Am. Chem. Soc. 127 (2005) 7183-7191.

    15. [15]

      [15] Y.X. Wang, H. Gies, J.H. Lin, Crystal structure of the new layer silicate RUB-39 and its topotactic condensation to a microporous zeolite with framework type RRO, Chem. Mater. 19 (2007) 4181-4188.

    16. [16]

      [16] S. Choi, J. Coronas, E. Jordan, et al., Layered silicates by swelling of AMH-3 and nanocomposite membranes, Angew. Chem. Int. Ed. 47 (2008) 552-555.

    17. [17]

      [17] Z.F. Li, B. Marler, H. Gies, A new layered silicate with structural motives of silicate zeolites: synthesis, crystals structure, and properties, Chem. Mater. 20 (2009) 1896-1901.

    18. [18]

      [18] A. Corma, V. Forné s, S.B. Pergher, T.L.M. Maesen, J.G. Buglass, Delaminated zeolite precursors as selective acidic catalysts, Nature 396 (1998) 353-356.

    19. [19]

      [19] W.J. Roth, J.C. Vartuli, Preparation of exfoliated zeolites from layered precursors: the role of pH and nature of intercalating media, Stud. Surf. Sci. Catal. 141 (2002) 273-279.

    20. [20]

      [20] A. Corma, U. Diaz, V. Forné s, et al., Characterization and catalytic activity of MCM-22 and MCM-56 compared with ITQ-2, J. Catal. 191 (2000) 218-224.

    21. [21]

      [21] N. Kyungsu, C. Minkee, P. Woojin, et al., Pillared MFI zeolite nanosheets of a single-unit-cell thickness, J. Am. Chem. Soc. 132 (2010) 4169-4177.

    22. [22]

      [22] S. Maheswari, E. Jordan, S. Kumar, et al., Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor, J. Am. Chem. Soc. 130 (2008) 1507-1516.

    23. [23]

      [23] P. Wu, J. Ruan, L. Wang, et al., Methodology for synthesizing crystalline metallosilicates with expanded pore windows through molecular alkoxysilylation of zeolitic lamellar precursors, J. Am. Chem. Soc. 130 (2008) 8178-8187.

    24. [24]

      [24] Y. Wang, Y.M. Liu, L.L. Wang, et al., Postsynthesis, characterization, and catalytic properties of aluminosilicates analogous to MCM-56, J. Phys. Chem. C 113 (2009) 18753-18760.

    25. [25]

      [25] L.L. Wang, Y. Wang, Y.M. Liu, et al., Post-transformation of MWW-type lamellar precursors into MCM-56 analogues, Microporous. Mesoporous. Mater. 113 (2008) 435-444.

    26. [26]

      [26] W.J. Roth, MCM-22 zeolite family and the delaminated zeolite MCM-56 obtained in one-step synthesis, Stud. Surf. Sci. Catal. 158A (2005) 19-26.

    27. [27]

      [27] W.B. Fan, P. Wu, S. Namba, T. Tatsumi, A titanosilicate that is structurally analogous to an MWW-Type lamellar precursor, Angew. Chem. Int. Ed. 43 (2004) 236-240.

    28. [28]

      [28] T. Ikeda, S. Kayamori, Y. Oumi, F. Mizukami, Structure analysis of Si-atom pillared lamellar silicates having micropore structure by powder X-ray diffraction, J. Phys. Chem. C 114 (2010) 3466-3476.

    29. [29]

      [29] H. Gies, U. Mü ller, B. Yilmaz, et al., Interlayer expansion of the layered zeolite precursor RUB-39: a universal method to synthesize functionalized microporous silicates, Chem. Mater. 23 (2011) 2545-2554.

    30. [30]

      [30] F.S. Xiao, B. Xie, H.Y. Zhang, et al., Interlayer-expanded microporous titanosilicate catalysts with functionalized hydroxyl groups, ChemCatChem 3 (2011) 1442-1446.

    31. [31]

      [31] H. Gies, U. Mü ller, B. Yilmaz, et al., Interlayer expansion of the hydrous layer silicate RUB-36 to a functionalized, microporous framework silicate: crystal structure analysis and physical and chemical characterization, Chem. Mater. 24 (2012) 1536-1545.

    32. [32]

      [32] J.G. Jiang, L.L. Jia, B.T. Yang, H. Xu, P. Wu, Preparation of Interlayer-Expanded zeolite from lamellar precursor Nu-6(1) by silylation, Chem. Mater. 25 (2013) 4710-4718.

    33. [33]

      [33] W.J. Roth, C.T. Kresge, Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si), Microporous. Mesoporous. Mater. 144 (2011) 158-161.

    34. [34]

      [34] M. Takahiko, C. Watcharop, S. Yasuhiro, S. Atsushi, O. Tatsuya, Role of acidic pretreatment of layered silicate RUB-15 in its topotactic conversion into pure silica sodalite, Chem. Mater. 23 (2011) 3564-3570.

    35. [35]

      [35] Z.C. Zhao, W.P. Zhang, P.J. Ren, et al., Insights into the topotactic conversion process from layered silicate RUB-36 to FER-type zeolite by layer reassembly, Chem. Mater. 25 (2013) 840-847.

    36. [36]

      [36] H. Xu, L.L. Jia, H.H. Wu, B.T. Yang, P. Wu, Structural diversity of lamellar zeolite Nu-6(1)-postsynthesis of delaminated analogues, Dalton Trans. 43 (2014) 10492-10500.

    37. [37]

      [37] A. Burton, R.J. Accardi, R.F. Lobo, MCM-47: a highly crystalline silicate composed of hydrogen-bonded ferrierite layers, Chem. Mater. 12 (2000) 2936-2942.

    38. [38]

      [38] B.T. Yang, J.G. Jiang, H. Xu, et al., Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors, Appl. Catal. A: Gen. 455 (2013) 107-113.

    39. [39]

      [39] P. Li, G.Q. Liu, H.H. Wu, et al., Postsynthesis and selective oxidation properties of nanosized Sn-beta zeolite, J. Phys. Chem. C 115 (2011) 3663-3670.

    40. [40]

      [40] P. Wu, T. Komatsu, T. Yashima, Characterization of titanium species incorporated into dealuminated mordenites by means of IR spectroscopy and 18O-exchange technique, J. Phys. Chem. 100 (1996) 10316-10322.

  • 加载中
    1. [1]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    2. [2]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    3. [3]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    4. [4]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    5. [5]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    6. [6]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    7. [7]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    8. [8]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    9. [9]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    10. [10]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    11. [11]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    12. [12]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    13. [13]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    14. [14]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    15. [15]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    16. [16]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    17. [17]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    18. [18]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    19. [19]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    20. [20]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

Metrics
  • PDF Downloads(0)
  • Abstract views(568)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return