Citation: Bo-Ting Yang, Peng Wu. Post-synthesis and catalytic performance of FER type sub-zeolite Ti-ECNU-8[J]. Chinese Chemical Letters, ;2014, 25(12): 1511-1514. doi: 10.1016/j.cclet.2014.09.003
-
A titanosilicate Ti-ECNU-8 with a FER type sub-zeolite structure was developed by pots-synthesis and applied to the epoxdiation of alkenes with hydrogen peroxide. A controlled acid treatment on the pure silica layered precursor PLS-3 of FER topology gave rise to a sub-zeolite ECNU-8. Composed of a collection of FER sheets without an ordered stacking manner along layer related [1 0 0] direction, the structure of ECNU-8 was constructed by a reorientation of interlayer hydrogen bond moieties caused by partial removal of interlayer organic structure directing agent. ECNU-8 possessed an external surface area enlarged by ca. 30% in comparison to corresponding three-dimensional FER zeolite. Through a solid-gas reaction with TiCl4 vapor, tetrahedral Ti active sites were introduced into the framework. The resultant Ti-ECNU-8 retained the structural properties of ECNU-8, and exhibited an excellent catalytic performance for the epoxidation of cycloalkenes owing to the accessible Ti sites located in open reaction space.
-
Keywords:
- Sub-zeolite,
- ECNU-8,
- Titanosilicate,
- Epoxidation,
- Layered zeolite
-
-
[1]
[1] S.M. Csicsery, Shape-selective catalysis in zeolites, Zeolites 4 (1984) 202-213.
-
[2]
[2] V. Valtchev, G. Majano, S. Mintovaa, J. Peíez-Ramírez, Tailored crystalline microporous materials by post-synthesis modification, Chem. Soc. Rev. 42 (2013) 263-290.
-
[3]
[3] S. Feast, J.A. Lercher, Synthesis of intermediates and fine chemicals using molecular sieve catalysts, Stud. Surf. Sci. Catal. 102 (1996) 363-412.
-
[4]
[4] W.J. Roth, P. Nachtigall, R.E. Morris, J. Č ejka, Two-dimensional zeolites: current status and perspectives, Chem. Rev. 114 (2014) 4807-4837.
-
[5]
[5] W.J. Roth, J.Čejka, Two-dimensional zeolites: dream or reality, Catal. Sci. Technol. 1 (2011) 43-53.
-
[6]
[6] J. Ruan, P.Wu, B. Slater, et al., Structural characterization of interlayer expanded zeolite prepared from ferrierite lamellar precursor, Chem. Mater. 21 (2009) 2904-2911.
-
[7]
[7] W.J. Roth, Chapter 7: synthesis of delaminated and pillared zeolitic materials, Stud. Surf. Sci. Catal. 168 (2007) 221-239.
-
[8]
[8] M.E. Leonowicz, J.A. Lawton, S.L. Lawton, M.K. Rubin, MCM-22: a molecular sieve with two independent multidimensional channel systems, Science 264 (1994) 1910-1913.
-
[9]
[9] L. Schreyeck, P. Caullet, J.C. Mougenel, J.L. Guth, B. Marler, PREFER: a new layered (alumino) silicate precursor of FER-type zeolite, Microporous. Mater. 6 (1996) 259-271.
-
[10]
[10] T. Ikeda, Y. Akiyama, Y. Oumi, A. Kawai, F. Mizukami, The topotactic conversion of a novel layered silicate into a new framework Zeolite, Angew. Chem. Int. Ed. 43 (2004) 4892-4896.
-
[11]
[11] S. Zanardi, A. Alberti, G. Cruciani, et al., Crystal structure determination of zeolite Nu-6(2) and its layered precursor Nu-6(1), Angew. Chem. Int. Ed. 43 (2004) 4933-4937.
-
[12]
[12] B. Marler, N. Strö ter, H. Gies, The structure of the new pure silica zeolite RUB-24, Si32O64, obtained by topotactic condensation of the intercalated layer silicate RUB-18, Microporous. Mesoporous. Mater. 83 (2005) 201-211.
-
[13]
[13] Y.X. Wang, H. Gies, B. Marler, U. Mü ller, Synthesis and crystal structure of zeolite RUB-41 obtained as calcination product of a layered precursor: a systematic approach to a new synthesis route, Chem. Mater. 17 (2005) 43-49.
-
[14]
[14] D. Mochizuki, A. Shimojima, T. Imagawa, K. Kuroda, Molecular manipulation of two-and three-dimensional silica nanostructures by alkoxysilylation of a layered silicate octosilicate and subsequent hydrolysis of alkoxy groups, J. Am. Chem. Soc. 127 (2005) 7183-7191.
-
[15]
[15] Y.X. Wang, H. Gies, J.H. Lin, Crystal structure of the new layer silicate RUB-39 and its topotactic condensation to a microporous zeolite with framework type RRO, Chem. Mater. 19 (2007) 4181-4188.
-
[16]
[16] S. Choi, J. Coronas, E. Jordan, et al., Layered silicates by swelling of AMH-3 and nanocomposite membranes, Angew. Chem. Int. Ed. 47 (2008) 552-555.
-
[17]
[17] Z.F. Li, B. Marler, H. Gies, A new layered silicate with structural motives of silicate zeolites: synthesis, crystals structure, and properties, Chem. Mater. 20 (2009) 1896-1901.
-
[18]
[18] A. Corma, V. Forné s, S.B. Pergher, T.L.M. Maesen, J.G. Buglass, Delaminated zeolite precursors as selective acidic catalysts, Nature 396 (1998) 353-356.
-
[19]
[19] W.J. Roth, J.C. Vartuli, Preparation of exfoliated zeolites from layered precursors: the role of pH and nature of intercalating media, Stud. Surf. Sci. Catal. 141 (2002) 273-279.
-
[20]
[20] A. Corma, U. Diaz, V. Forné s, et al., Characterization and catalytic activity of MCM-22 and MCM-56 compared with ITQ-2, J. Catal. 191 (2000) 218-224.
-
[21]
[21] N. Kyungsu, C. Minkee, P. Woojin, et al., Pillared MFI zeolite nanosheets of a single-unit-cell thickness, J. Am. Chem. Soc. 132 (2010) 4169-4177.
-
[22]
[22] S. Maheswari, E. Jordan, S. Kumar, et al., Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor, J. Am. Chem. Soc. 130 (2008) 1507-1516.
-
[23]
[23] P. Wu, J. Ruan, L. Wang, et al., Methodology for synthesizing crystalline metallosilicates with expanded pore windows through molecular alkoxysilylation of zeolitic lamellar precursors, J. Am. Chem. Soc. 130 (2008) 8178-8187.
-
[24]
[24] Y. Wang, Y.M. Liu, L.L. Wang, et al., Postsynthesis, characterization, and catalytic properties of aluminosilicates analogous to MCM-56, J. Phys. Chem. C 113 (2009) 18753-18760.
-
[25]
[25] L.L. Wang, Y. Wang, Y.M. Liu, et al., Post-transformation of MWW-type lamellar precursors into MCM-56 analogues, Microporous. Mesoporous. Mater. 113 (2008) 435-444.
-
[26]
[26] W.J. Roth, MCM-22 zeolite family and the delaminated zeolite MCM-56 obtained in one-step synthesis, Stud. Surf. Sci. Catal. 158A (2005) 19-26.
-
[27]
[27] W.B. Fan, P. Wu, S. Namba, T. Tatsumi, A titanosilicate that is structurally analogous to an MWW-Type lamellar precursor, Angew. Chem. Int. Ed. 43 (2004) 236-240.
-
[28]
[28] T. Ikeda, S. Kayamori, Y. Oumi, F. Mizukami, Structure analysis of Si-atom pillared lamellar silicates having micropore structure by powder X-ray diffraction, J. Phys. Chem. C 114 (2010) 3466-3476.
-
[29]
[29] H. Gies, U. Mü ller, B. Yilmaz, et al., Interlayer expansion of the layered zeolite precursor RUB-39: a universal method to synthesize functionalized microporous silicates, Chem. Mater. 23 (2011) 2545-2554.
-
[30]
[30] F.S. Xiao, B. Xie, H.Y. Zhang, et al., Interlayer-expanded microporous titanosilicate catalysts with functionalized hydroxyl groups, ChemCatChem 3 (2011) 1442-1446.
-
[31]
[31] H. Gies, U. Mü ller, B. Yilmaz, et al., Interlayer expansion of the hydrous layer silicate RUB-36 to a functionalized, microporous framework silicate: crystal structure analysis and physical and chemical characterization, Chem. Mater. 24 (2012) 1536-1545.
-
[32]
[32] J.G. Jiang, L.L. Jia, B.T. Yang, H. Xu, P. Wu, Preparation of Interlayer-Expanded zeolite from lamellar precursor Nu-6(1) by silylation, Chem. Mater. 25 (2013) 4710-4718.
-
[33]
[33] W.J. Roth, C.T. Kresge, Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si), Microporous. Mesoporous. Mater. 144 (2011) 158-161.
-
[34]
[34] M. Takahiko, C. Watcharop, S. Yasuhiro, S. Atsushi, O. Tatsuya, Role of acidic pretreatment of layered silicate RUB-15 in its topotactic conversion into pure silica sodalite, Chem. Mater. 23 (2011) 3564-3570.
-
[35]
[35] Z.C. Zhao, W.P. Zhang, P.J. Ren, et al., Insights into the topotactic conversion process from layered silicate RUB-36 to FER-type zeolite by layer reassembly, Chem. Mater. 25 (2013) 840-847.
-
[36]
[36] H. Xu, L.L. Jia, H.H. Wu, B.T. Yang, P. Wu, Structural diversity of lamellar zeolite Nu-6(1)-postsynthesis of delaminated analogues, Dalton Trans. 43 (2014) 10492-10500.
-
[37]
[37] A. Burton, R.J. Accardi, R.F. Lobo, MCM-47: a highly crystalline silicate composed of hydrogen-bonded ferrierite layers, Chem. Mater. 12 (2000) 2936-2942.
-
[38]
[38] B.T. Yang, J.G. Jiang, H. Xu, et al., Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors, Appl. Catal. A: Gen. 455 (2013) 107-113.
-
[39]
[39] P. Li, G.Q. Liu, H.H. Wu, et al., Postsynthesis and selective oxidation properties of nanosized Sn-beta zeolite, J. Phys. Chem. C 115 (2011) 3663-3670.
-
[40]
[40] P. Wu, T. Komatsu, T. Yashima, Characterization of titanium species incorporated into dealuminated mordenites by means of IR spectroscopy and 18O-exchange technique, J. Phys. Chem. 100 (1996) 10316-10322.
-
[1]
-
-
[1]
Naihong Wang , Longkang Zhang , Yejun Guan , Peng Wu , Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248
-
[2]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[3]
Guoliang Liu , Zhiqiang Liu , Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308
-
[4]
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
-
[5]
Zhenzhen Zhao , Meichen Jiao , Jiejie Ling , Han Jiang , Yan Gao , Hao Xu , Hai-Qing Li , Jingang Jiang , Peng Wu , Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336
-
[6]
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
-
[7]
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
-
[8]
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
-
[9]
Si-Hua Liu , Jun-Hao Zhou , Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312
-
[10]
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
-
[11]
Jiahao Li , Guinan Chen , Chunhong Chen , Yuanyuan Lou , Zhihao Xing , Tao Zhang , Chengtao Gong , Yongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760
-
[12]
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
-
[13]
Chao Ma , Peng Guo , Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235
-
[14]
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
-
[15]
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
-
[16]
Zhuoer Cai , Yinan Zhang , Xiu-Ni Hua , Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426
-
[17]
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
-
[18]
Qiang Wu , Baofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089
-
[19]
Juan CHEN , Guoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341
-
[20]
Xuan Zhu , Lin Zhou , Xiao-Yun Huang , Yan-Ling Luo , Xin Deng , Xin Yan , Yan-Juan Wang , Yan Qin , Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(568)
- HTML views(19)