Citation:
Ayekpam Bimolini Devi, Dinesh Singh Moirangthem, Narayan Chandra Talukdar, M. Damayanti Devi, N. Rajen Singh, Meitram Niraj Luwang. Novel synthesis and characterization of CuO nanomaterials: Biological applications[J]. Chinese Chemical Letters,
;2014, 25(12): 1615-1619.
doi:
10.1016/j.cclet.2014.07.014
-
CuO nanoparticles were synthesized at a relatively low temperature (80 ℃) for 2 h using polyethylene glycol-glycerol mixture which acts as a capping agent. A detailed characterization of the synthesized nanomaterials were performed utilizing X-ray diffraction (XRD), infra-red spectroscopy (IR), thermogravimetric analysis (TGA-DTA), transmission electron microscopy (TEM), photoluminescence (PL) by studying its crystalline phase, vibrational mode, thermal analysis, morphology and photoluminescence properties. The effect of annealing on the as-prepared nanoparticles were studied and compared with their corresponding bulk counterpart. The synthesized nanoparticles have been screened for in vitro cytotoxicity (IC50) studies against the human cervical adenocarcinoma cell line (HeLa) using MTT assay methods. The as-prepared nanoparticle inhibits the proliferation of this HeLa cell. The standard disc diffusion method has been used to study the antibacterial activity of the samples against the human pathogenic bacteria Escherichia coli (MTCC 729), Proteus mirabilis (MTCC 425) and Klebsiella pneumoniae subsp. pneumoniae (MTCC 432). The results have been compared with the positive control antibiotic gentamycin. The synthesized nanoparticles would provide a potential alternative to antibiotics for controlling some of the microorganisms causing urolithiasis.
-
Keywords:
- CuO nanoparticles,
- Annealing,
- HeLa cell lines,
- Cytotoxicity,
- Antibacterials
-
-
-
[1]
[1] R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, One dimensional metal oxide nanostructures: recent developments in synthesis, characterization and applications, Adv. Funct. Mater. 22 (2012) 3326-3370.
-
[2]
[2] H. Zhu, F. Zhao, L.Q. Pan, et al., Structural and magnetic properties of Mn-doped CuO thin films, J. Appl. Phys. 101 (2007) 09H111.
-
[3]
[3] B.O. Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films, Nature 353 (1991) 737-740.
-
[4]
[4] M.N. Luwang, Microemulsion mediated synthesis of triangular SnO2 nanoparticles: luminescence application, Appl. Surf. Sci. 290 (2014) 332-339.
-
[5]
[5] P.L. Singh, M.N. Luwang, S.K. Srivastava, Luminescence and photocatalytic studies of Sm3+ ion doped SnO2 nanoparticles, New J. Chem. 38 (2014) 115-121.
-
[6]
[6] R.T. Stuart, P. Pattanasattayavong, T.D. Anthopoulos, Solution processable metal oxide semiconductors for thin film transistor applications, Chem. Soc. Rev. 42 (2013) 6910-6923.
-
[7]
[7] V. Javier, Molecular chemistry to the fore: new insights into the fascinating world of photoactive colloidal semiconductor nanocrystals, J. Phys. Chem. Lett. 4 (2013) 653-668.
-
[8]
[8] W.C.W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 281 (1998) 2016-2018.
-
[9]
[9] C. Chouly, D. Pouliquen, I. Lucet, J.J.L. Jeune, P. Jallet, Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution, J. Microencapsulation 13 (1996) 245-255.
-
[10]
[10] P. Couvreur, C. Dubernet, F. Puisieux, Controlled drug delivery with nanoparticles: current possibilities and future trends, Eur. J. Pharm. Biopharm. 41 (1994) 2-13.
-
[11]
[11] Z.K. Zheng, B.B. Huang, Z.Y. Wang, et al., Crystal faces of Cu2O and their stabilities in photocatalytic reactions, J. Phys. Chem. C 113 (2009) 14448-14453.
-
[12]
[12] J.T. Zhang, J.F. Liu, Q. Peng, X. Wang, Y.D. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors, Chem. Mater. 18 (2006) 867-871.
-
[13]
[13] G. Ren, D. Hu, E.W.C. Cheng, et al., Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents 33 (2009) 587-590.
-
[14]
[14] K. Donaldson, V. Stone, C.L. Tran, W. Kreyling, P.J.A. Borm, Nanotoxicology, Occup. Environ. Med. 61 (2004) 727-728.
-
[15]
[15] N. Lewinski, V. Colvin, R. Drezek, Cytotoxicity of nanoparticles, Small 4 (2008) 26-49.
-
[16]
[16] G. Oberdö rster, E. Oberdö rster, J. Oberdö rster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect. 113 (2005) 823-839.
-
[17]
[17] M.N. Luwang, R.S. Ningthoujam, Jagannath, S.K. Srivastava, R.K. Vatsa, Effects of Ce3+ co-doping and annealing on phase transformation and luminescence of Eu3+ doped YPO4 nanorods: D2O solvent effect, J. Am. Chem. Soc. 132 (2010) 2759-2768.
-
[18]
[18] M.N. Luwang, R.S. Ningthoujam, S.K. Srivastava, R.K. Vatsa, Disappearance and recovery of luminescence in Bi3+, Eu3+ co-doped YPO4 nanoparticles due to presence of water molecules up to 800 ℃, J. Am. Chem. Soc. 133 (2011) 2998-3004.
-
[19]
[19] S.S. Banerjee, N. Aher, R. Patil, J. Khandare, Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications, J. Drug Deliv. 2012 (2012) 103973.
-
[20]
[20] R.J. Hong, J.B. Huang, H.B. He, Z.X. Fan, J.D. Shao, Influence of different posttreatments on the structure and optical properties of zinc oxide thin films, Appl. Surf. Sci. 242 (2005) 346-352.
-
[21]
[21] D.H. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Band-gap energies of sol-gel-derived SrTiO3 thin films, Appl. Phys. Lett. 79 (2001) 3767-3772.
-
[22]
[22] K.K. Dey, A. Kumar, R. Shanker, et al., Growth morphologies, phase formation, optical & biological responses of nanostructures of CuO and their application as cooling fluid in high energy density devices, RSC Adv. 2 (2012) 1387-1403.
-
[23]
[23] P.H. Huh, J.Y. Yang, S.C. Kim, Facile formation of nanostructured 1D and 2D arrays of CuO islands, RSC Adv. 2 (2012) 5491-5494.
-
[24]
[24] M.N. Luwang, S. Chandra, D. Bahadur, S.K. Srivastava, Dendrimer facilitated synthesis of multifunctional lanthanide based hybrid nanomaterials for biological applications, J. Mater. Chem. 22 (2012) 3395-3403.
-
[25]
[25] T. Sun, Y. Yan, Y. Zhao, F. Guo, G. Jiang, Copper oxide nanoparticles induce autophagic cell death in A549 cells, PLoS ONE 7 (2012) e43442.
-
[26]
[26] A. Bergmann, Autophagy and cell death: no longer at odds, Cell 131 (2007) 1032-1034.
-
[27]
[27] R.Q. Hang, A. Gao, X.B. Huang, et al., Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes, J. Biomed. Mater. Res. Part A 102A (2014) 1850-1858.
-
[28]
[28] D.E. Corpet, G. Parnaud, M. Delverdier, G. Peiffer, S. Tache, Consistent and fast inhibition of colon carcinogenesis by polyethylene glycol in mice and rats given various carcinogens, Cancer Res. 60 (2000) 3160-3164.
-
[29]
[29] E. Dorval, J.M. Jankowski, J.P. Barbieux, et al., Polyethylene glycol and prevalence of colorectal adenomas, Gastroenterol. Clin. Biol. 30 (2006) 1196-1199.
-
[30]
[30] H.K. Roy, D.P. Kunte, J.L. Koetsier, et al., Chemoprevention of colon carcinogenesis by polyethylene glycol: suppression of epithelial proliferation via modulation of snail/β-catenin signaling, Mol. Cancer Ther. 5 (2006) 2060-2069.
-
[31]
[31] S. Jun, K. Emiko, K. Fumio, et al., Detection of active oxygen generated from ceramic powders having antibacterial activity, J. Chem. Eng. Jpn. 29 (1996) 627-633.
-
[32]
[32] A. Guy, L. Anat, D. Rachel, et al., Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury, Adv. Funct. Mater. 19 (2009) 842-852.
-
[33]
[33] Topley and Wilson's Principles of Bacteriology, Virology and Immunity, Williams and Wilkins, Baltimore, 1975, pp. 859-900.
-
[34]
[34] E. Miftode, O. Dorneanu, D. Leca, et al., Antimicrobial resistance profile of E. coli and Klebsiella spp. from urine in the Infectious Diseases Hospital Iasi, Rev. Med. Chir. Soc. Med. Nat. Iasi 113 (2008) 478-482.
-
[35]
[35] G. Ang, R. Hang, X. Huang, et al., The effect of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts, Biomaterials 35 (2014) 4223-4235.
-
[36]
[36] Y.E. Lin, R.D. Vidic, J.E. Stout, C.A. McCartney, V.L. Yu, Inactivation of Mycobacterium avium by copper and silver ions, Water Res. 32 (1998) 1997-2000.
-
[37]
[37] J.H. Kim, H. Cho, S.E. Ryu, M.U. Choi, Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion, Arch. Biochem. Biophys. 382 (2000) 72-80.
-
[38]
[38] S.J. Stohs, D. Bagchi, Oxidative mechanisms in the toxicity of metal ions, Free Radic. Biol. Med. 18 (1995) 321-336.
-
[1]
-
-
-
[1]
Jin Wang , Xiaoyan Pan , Junyu Zhang , Qingqing Zhang , Yanchen Li , Weiwei Guo , Jie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187
-
[2]
Chuan Li , Yangyang Han , Yanan Zhai , Ke Li , Xingzhong Liu , Zhuan Zhang , Cai Jia , Yongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019
-
[3]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[4]
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018
-
[5]
Jisheng Liu , Junli Chen , Xifeng Zhang , Yin Wu , Xin Qi , Jie Wang , Xiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779
-
[6]
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
-
[7]
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
-
[8]
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
-
[9]
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
-
[10]
Feng Cui , Fangman Chen , Xiaochun Xie , Chenyang Guo , Kai Xiao , Ziping Wu , Yinglu Chen , Junna Lu , Feixia Ruan , Chuanxu Cheng , Chao Yang , Dan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681
-
[11]
Bohan Chen , Liming Gong , Jing Feng , Mingji Jin , Liqing Chen , Zhonggao Gao , Wei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432
-
[12]
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
-
[13]
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
-
[14]
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
-
[15]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[16]
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
-
[17]
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
-
[18]
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
-
[19]
Yiran Tao , Chunlei Dai , Zhaoxiang Xie , Xinru You , Kaiwen Li , Jun Wu , Hai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170
-
[20]
Xiangqian Cao , Chenkai Yang , Xiaodong Zhu , Mengxin Zhao , Yilin Yan , Zhengnan Huang , Jinming Cai , Jingming Zhuang , Shengzhou Li , Wei Li , Bing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(491)
- HTML views(0)